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Andreev conductance of chaotic and integrable quantum dots
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We examine the voltag€ and magnetic field dependent Andreev conductance of a chaotic quantum dot
coupled via point contacts to a normal metal and a superconductor. In the case where the contact to the
superconductor dominates, we find that the conductance is consistent with the dot itself behaving as a
superconductor—it appears as though Andreev reflections are occurring locally at the interface between the
normal lead and the dot. This is contrasted with the behavior of an integrable dot, where for a similar strong
coupling to the superconductor no such effect is seen. The voltage dependence of the Andreev conductance
thus provides an extremely pronounced quantum signature of the nature of the dot’s classical dynamics. For the
chaotic dot, we also study nonmonotonic reentrance effects that occur irVtzoit B.

[. INTRODUCTION superconducting electrode is much wider than that to the
normal electrode, th& and B dependent conductance of a
Though the actual process of Andreev reflection is simplechaotic dot is consistent with assuming that the dot has itself
to describe—an electron in a normal metal incident on @ecome superconducting. The conductance is doubled with
superconductor is reflected back as a hel serves as the respect to the normal state, and remains bias independent
fundamental basis for some of the most striking effectsuntil eV reaches the induced gadpin the Andreev billiard.
known in mesoscopic physiédn particular, Andreev reflec- This is in sharp contrast to what is found in exact calcula-
tion may be viewed as the phenomenon underlying the proxtions for integrable dots. For both rectangular and circular
imity effect, in which a superconductor is able to strongly dot geometries, the conductance drops off linearly with volt-
influence the properties of a nearby normal metal. Andreege Without any plateau ne&r=0. We argue that this dif-
reflection is also the process responsible for the unique corference is ubiquitous for integrable versus chaotic systems.

ductance properties of normal-superconductifgp) junc- . The second motivation for the present_ study is the ques-
tions, such as the conductance enhancement observed in {8 Of reentrance effects—is the behavior of the conduc-
point contacts. tance simply monotonic iv andB? In the case of a diffu-

sive NS junction, it is well known that this is not the
case'*1*At zero voltage and also at voltages large enough to

effect®1° Such systems consist of an isolated normal metaﬁreak electron-hole degeneracy, the conductance of the junc-

region, small enough that electrons remain phase cohereflf" Is the same as in the normal state. However, a conduc-
glon, s 9 P fince enhancement does occur at intermediate voltages. We
within it (i.e., a quantum dot coupled weakly through a

. . X xamine reentrance effects in the conductance of chaotic An-
point contact to a superconducting electrode. Calculations g

. ; reev billiards, both in the case of ballistic contacts and in
the density of states in such structures have shown, ratheﬁqe case where both point contacts contain opaque tunnel

remarkably, that the proximity effect is sensitive to the na-pgriers.

ture of the classical dynamics—a gap of sixen the spec- The remainder of this paper is organized as follows. In

trum is present in the case of a chaotic billiard, whereas irSec. Il, we present our model for the chaotic dot and intro-

the integrable case the density of states vanishes linearly duce the technique used to calculate the voltage and field

the Fermi energy:’ dependent Andreev conductance. In Sec. lll, we discuss re-
In the present work we also focus on the Andreev billiard,sults in the case where the contact to the superconductor

but now add a second point contact leading to a normatlominates the contact to the normal electrode, and contrast

electrode and investigate the Andreev conductance of thghe results for a chaotic billiard with exact quantum mechani-

resulting structure. The Andreev conductance is the differeneal calculations for two integrable systems. In Sec. IV, we

tial conductancell/dV at voltages smaller than the super- discuss reentrance effects. We conclude with a synopsis of

conducting gap in the S electrode, where Andreev reflectioour key results in Sec. V.

at the interface between the normal metal dot and the super-

conductor is the only current carrying mechanism. Unlike

previous studies>? here we calculate the full voltag@/) Il. MODEL AND TECHNICAL DETAILS

and magnetic fieldB) dependence of the conductance.
Two questions are of particular interest in this study.

First, does the sensitivity of the proximity effect to chaotic  We consider a chaotic quantum dot coupled via point con-

versus integrable dynamics, as seen in the density of statescts to a normal metal and a superconductor having, respec-

also manifest itself in the Andreev conductance? We findively, Ny andNg propagating modes at the Fermi enekgy

that indeed it does. In the case where the contact to thésee Fig. 1L We assume that the ergodic time is much shorter

Attention has recently turned to so-called Andreev bil-
liards as ideal systems in which to study the proximity

A. Formulation of the problem
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The T, are the transmission probabilities for each mode,
FIG. 1. Schematic drawing of a dot coupled via point contacts tovhich we take simply a$y for modes coupled to the normal

a normal metal and a superconductor. electrode andrg for those coupled to the superconducting
electrode(this in turn defineZy andZyg).
than other relevant time scales of the dp¢., the inverse For voltages below the excitation gapof the supercon-

superconducting gap/A and the dwell timg so that ran- ductor, electrons and holes incident on the dot-
dom matrix theory® (RMT) may be used to describe its superconductor interface may be Andreev reflected. In this
transport and spectral properties. In RMT, the Hamiltoniancase scattering from the dot, as seen from the normal metal
of the dot is represented by &M< M Hermitian matrixH, contact, can be represented by ld2< 2Ny scattering ma-
which, at zero magnetic field, is real symmetric and a memtrix S:

ber of the Gaussian orthogonal ensemble:

_(ree(s) reh(e)). 2.6

) ron(e)

Here,rpe(g) is the Ny X Ny matrix describing the Andreev
The matrix sizeM is sent to infinity at the end of the calcu- reflection of an incoming electron in the N point contact to
lation. The energy scale is related to the mean level spac- an outgoing hole in the same lead; (), rod(e), and
ing 26 by A=2M /7. More specifically, & is the mean r,,(¢) are defined analogously. These matrices may be writ-
level spacing for particlelike excitations in the absence often in terms of the submatrices of the normal scattering ma-
coupling to the superconductor; with the superconductor, théicesS(¢).2 For ry (&) one has
relevant excitations are of mixed particle-hole type, and have

1
P(H)=exp<—ZM>\2trH2). 2.0

a level spacing for excitation energies much larger than the he(e) =tid —&)Mede)a(e)ts\e), (2.7
gap energy. with
In the case of a nonzero magnetic field, the Hem;itian
matrix H is a member of the Pandey-Mehta distributir? Moo(e)=[1-a(e)?rede)rkd —e)] L,
2 .
P(H)ocexp— M(1+27 ) a(e)=exd —i arccoge/A)].
4\

For voltages below the gap in the S electrode, the zero

M s 5 temperature conductance of the system is given by the
Xiél[(REHij) +y “(ImH;))“]|. (2.2  Tabikane-Ebisawa formuia

As v increases from 0 to 1, the distribution evolves from one _ 4_e2 t
with complete time-reversal symmetf@aussian orthogonal GleV)= h trThe(€VITne(€V). 2.8
ensemblgto one with no time-reversal symmet{§@aussian )

unitary ensemble The parametery may be related to the We wish to calculate the .ensemble—averaged Andreev
magnetic flux® through a two-dimensional dot having area conductance of the dot for arbitrary values of voltagand

Al718 magnetic fieldB; previous studies focused exclusively on the
cases wher¥,B were 0 or large enough to completely break
d\2 fivg the symmetry between electrons and holes. To this end, we
M y2= C(a —_—, (2.3) first rewrite Eq.(2.6) in @ manner that is formally equivalent
o/ JAs to the normal state expressid@.4). Letting (g= 7TWSW£
where®,=hcle is the flux quantumy is the Fermi veloc- and Qy=7WyW], we define the B1x2M effective
ity, and C is a constant of order unity. particle-hole Hamiltoniah®

The normal N+ Ng) X (Ny+ Ng) scattering matrixs(e)

of the system at an energyaboveEg can be expressed in H= H 0 2.9
terms of the matri>H:*° 0 —H*) '
S(e)=1-27miW'(e —H—im7WW") 1w and the self-energies from the leads
run(e)  tang(e) 1Q 0
:< NSRS (2.4 Eﬁl(s)=—l( " :

tsn(e)  rsde) 0 Qy

whereW is an M X (Ny+ Ng) matrix representing the cou-
. | . A (e/A)Qg Qg

pling between the point contacts and the dot, having ele- 3%e)=— —— . (2.10
ments A%—g?\ Qg (e/A)Qg
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ad (@i FIG. 3. (a) Direct contribution to the Andreev conductance. The
FIG. 2. (a) Definition and diagrammatic representation of the frace appearing in Eq2.8) is represented by the bubble diagram.

unaveraged Green function. This is B 2M matrix;n,mreferto  1he double lines indicate the averaged Green func{ign The
mode indices, whild,i’ are electron-hole indices which can take index n corresponds to a mode coupled to the normal contact and

one of two values € or h). (b) The effective Hamiltoniar#{ is should be summed ovetb) Diffusion contribution to the Andreev
represented by a cross; the dashed lines indicates averdging. conductance(c) Dyson equation for the M X 4M matrix D. Note
Diagrammatic Dyson equation; the double line is the average(ljhatupper and_ lower t_aranches_net_ad to have matching mode indices,
Green functior(G). (d) Self-energy to leading order in NI/ the ~ Put not matching particle-hole indices.
neglected higher order terms correspond to graphs with crossed
dashed lines. The intermediate ind®is to be summed over. Note 1/Ny,1/Ns, we need only sum diagrams that have no crossed
that S and hence(G) are diagonal in mode space but have off- lines [lines indicate the averaging of matrix elementstbf
diagonal terms in particle-hole space. using the rule(2.13); see Fig. 2 abovie Note that\ will be
sent to infinity only at the very end of the calculation; this
With these definitions in place, a direct algebraic manipulafprocedure corresponds to first taking the matrix size to infin-
tion shows that the particle-hole scattering matsiin Eq. ity while keeping a finite bandwidth, and thémdependently
(2.6) can be expressed in terms of the effective retardedaking the bandwidth to infinity. This ordering of limits is
Green functiongg, necessary to generate a well-defined perturbative expansion.
The first step in this framework is to calculate the aver-
QR(s)=[s—H(s)—Eﬂ,(s)—Eg(s)]*1, (2.11 aged matrix Green functiofG). As in Refs. 5 and 8, we find
by the following self-consistent Dyson equation:

Wi 0 Wy 0 (G(e))=[e—3R(e)—3Ye)~3(e)] %, (2143
8(8):1_277i( 0 WL)QR(S)( 0 WN). where the self-energy from averagigis given by

(2.12

Eee Eeh A2 (tl’ gee> —<tl‘ geh)
The major simplification offered by Eq2.12 compared 2=1y® Se Sl MEWM —(trGr) (G |

to Eq.(2.6) is that it allows one to compute the conductance (2.14h

in a manner analogous to that used in the normal state, as we

now demonstrate. From this point onward, we focus on thén this equation, § denotes theVl X M unit matrix, and®

caseA>¢,eV. In this regime, the properties of the system denotes a direct product; it is pictured diagrammatically in

become independent of the specific details of the supercor=ig. 2. Having performed the summation of diagrams, we

ductor. Calculations retaining a finité will be presented Now letM—c, keepinge,5,Ns, andNy fixed.
elsewherée?! Three of the equations thus obtained relate the compo-

nents of the self-energy to one another:

B. Details of the calculation:B=0

We proceed to average E@.8) for the Andreev conduc- See=Zhhy  Zeh™ Zhes (2.153
tance over the Gaussian orthogonal ensemble defined by Eq.
(2.2), which is the appropriate ensemble for zero magnetic 32 -32=\2 (2.15b

field. We make use of the relation ] .
The last equation allows us to parametrzen terms of a

A2 pairing angled(e):
(HijHi) = (i) + 6 Sy - (2.13
Asinf(e)=—2q4(e), (2.16a
By expressing the scattering matrix in terms of the Green
function G, the trace appearing in the conductance formula A cosO(e)=iZd¢). (2.16b
may be represented as a standard “conductance bubble” dia- o _
gram (see Fig. 3 below Further, at this stage of the calcu- The remaining self-energy equations now take the form
lation N2/M is taken to be a small parameter, meaning that
the usual diagrammatic technique for impurity averaging tar f(e)] = NsQs (2173
may be used. To obtain the leading-order result in NNQn— i 7el268’ '
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TN We ignore here quantum corrections, which are formally
Qn="12-T\[1- cosd(e)]} 1, (2170 smaller by a factor of max(lNy,1/Ng). Note that in comput-
ing the diffusion sum each individual graph is of orde1/
Ts this means that terms of orderM/must be retained when
QS=?{2—T5[1+sin 6(e)]} L (2.179  computing the &4 matrix inverse arising from summing
the series. As with the calculation of the average Green func-
To obtain a unique solution of the self-energy equations wéion (G), we let M tend to infinity only after having per-
have imposed the boundary conditidh.«(c)——ix as formed the partial summation of diagrams.
g—o0; this represents the physical condition that we recover To present the results of the conductance calculation, we
a normal metal with a constant density of states at largdirst define the following kernel functions:
energies. The pairing anglé can is related the density of
states of the dot: A(s)=2NN( 1_’%
N

Re{cog 6(¢)]}
—

2
|1+ZNcos{0)|2>

Im
ple)=——tr(G(s+0"))= (2.18

2
|1+Zssin(9)|2)

+2Ns< 1- ‘g—s
0= /2 corresponds to a fully superconducting state, while °
6=0 corresponds to the normal state. It is interesting to note —2 RgN\QN[Zn+cog 6)]
the analogy betweefi(¢) and the pairing angle used in the e
quasiclassical theory of dirty normal-superconducting +NgQd Zg+sin(#) ]} +—=Im [cog 6)],
interface$> and in the circuit theory of Andreev g
conductancé® In the present case, the normalization condi- (2.223
tion (2.15h does not need to be externally imposed, but is a
direct consequence of the averaging procedure. Q(e)=2Ny|Qysin(0)|2+ 2Ng Qs cog 6)|?,

While the leading-order solution of the self-eneryyis (2.22h
sufficient if one is interested only in the density of stai®s
in Ref. 8, the conductance calculation requires tNay'M, I (2)=2Ny|Qnl*{(1+6ZF +Z{)[1+]cog 6)|°]
Nn/M, ande/M S corrections to Eq(2.15b be calculated. 2
This correction may be expressed in terms of the leading- +8Zy(1+Zy)Recod ) ]}, (2.229

order self-energy solution:
& Ts(s)=2Ng Qg% (1+6Z%+Z&[1+|cog 0)[]

32 -32 1 2
eh 2 ee_4__ o NSO Sin(8) + Z] +8Z4(1+Z5)Re cog 6)]}, (2.220
A whereZy andZg were defined below Eq2.5. With these
e definitions, we find
+NNQN[cos{0)+ZN]+|% . Tﬁ
ir=2N sin(9)|?, (2.233
(2.19 dir N|2_2TN sin2(0/2)|2| n(o)| (
Having computed the self-energy from averagigand 212
thus the average Green functi¢f), we can proceed to sum =8N2I =N (AZ—02) 2T |si 2
diagrams for the conductance. In analogy to the usual impu- Gt NI Zn ( )~ lsinC0)]

rity technique?® two sets of contributions arisfsee Fig. 212k ) )
3(a)] to leading orderG = (4e?/h)(gp;;+ Upirr) - The first is a +(1=2Z§)"Alsin(6)|*+ 15| cog 6)|°].
direct contribution which is completely determined {y), (2.23h

that is, by th ble- d babilit litud . .
<r<:1>'|s y the ensemble-averaged probabllity ampitu eEquatlons(Z.Zza—(Z.Zst), along with Eq.(2.17) for the self-
o

energy,, determine the ensemble-averadggd O Andreev
Oair=(27)2 tr WI{(GYWWI(G) TWy=tr (rhe)(rpe . conductance through the dot to leading order iN\L/1/Ng
(2.20  for all voltages such thaeV<A. The extension of these

. I , . formulas to nonzer® is presented in the Appendix.
This contribution may be interpreted as arising from An-

dreev reflections that effectively occur at the interface of the
normal lead and the cavity. The second contribution is due to
the fluctuations of j:

A. Chaotic dot

— 2
it = ((Fen—=(Fen)) (Fen—(ren)))- (2.21 In this section, we consider the situation where the cou-
It describes the current carried by quasiparticles in the dopling between the dot and the superconductor is much stron-
that are Andreev reflected at the interface of the dot and thger than the coupling between the dot and the normal lead,
superconductor. Diagrammatically, it is equivalent to a dif-NyTy<<NsTs. In this limit, the normal metal will only
fusion ladder, where the averaging links the upper and loweweakly perturb the properties of the dot-superconductor sys-
branches of the conductance bubee Figs. ®)-3(d)].?>  tem; thus, we may view the conductance through the struc-

Ill. PROBING INDUCED SUPERCONDUCTIVITY VIA
CONDUCTANCE
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ture as being a probe of the induced superconductivity in th&elow the gap due to Andreev reflection, whereas above the
dot. As mentioned in the Introduction, previous studies haveyap the normal state conductance would be recovered as qua-
examined the density of states of such Andreev billiards irsiparticles would now carry the current. In this respect, note
the absence of a normal Ieﬁd{ was found for the case of a that below the induced gaf both the averaged reflection
chaotic dot that an energy gadpopens up on a scale set by probability {|r.,|?) and the averaged reflection amplitude
the inverse of the time needed for a particle to escape fromyr 4| are nonzero; foeVsA, the latter vanishes. Nonethe-

the dot to the superconductor: less, in both case€.e., for voltages above and belod),
A=c(Eq 3.) Andreev reflechn is the only current carrying process. For
s ' energies belowA, the dot itself appears as if it were super-
4 NeTod conducting and Andreev reflection effectively occurs at the
Es= ( - () =( o |- (3.2 normal-lead—dot interface. For energies far abAyeurrent
Ses through the dot is effectively carried by quasiparticles in the
The parametec is of order unity and a monotonic function dot (which are either electron- or holelikevhich Andreev
of Tg; it varies from 0.6 in the case of no tunnel barrier to 1reflect at the dot-superconductor interface.
in the case of an opaque tunnel barrier. It was also found that The quantum dot continues to act as if it were a supercon-
the shape of the density of states abdvevas vastly differ- ~ ductor in the case where the contact to the normal lead is no
ent in these two limits: in the tunnel reginfe<1, the den-  longer perfect(i.e., Ty#1); one need only note that, if
sity of states was BCS-like, having a square-root singularitym{sin 6,(¢)]} is replaced by/A, Eq.(3.3) becomes identi-
atA, whereas in the case of no tunnel barrier the density ofal to the Blonder-Tinkham-KlapwijKBTK) formula for
states gradually increased abdveNote that the gaj does (h€ subgap conductance of a normal-point-contact—

not depend on the gad in the bulk superconductor, which superconductor junction, where there is a tunnel barrier at the
was taken to infinity in the calculations. ' interface having transmissiafy, .2° The BTK formula is de-

The question that naturally arises here is how the induceﬁf.\’ed assuming there is_ no spatial separation_be'tween the
superconductivity seen in the density of states manifests iSit€S Of Andreev scattering and normal scattering; the only

self in the conductance. Some insight may be obtained b§N€r9y dependence thus comes from the Andreev reflection
considering Eqs(2.233 and (2.23b to lowest order in the phasex(e), not from the lack of elegtron hole degeneracy at
small parametery=NyTy/NsTs. Without the normal lead, finite voltages. The replacement ofA by Im{sin[6(s)]} in

we have a gap in the dot density of states up to an enkrgy EQ. (3.3 means that the Andreev reflection phasén the

As the density of states is proportional to{Req ()]}, this ~ present case is not necessarily the usu@l) given in Eq.
implies that REA(s)]= m/2+0(7) for e<A . Using this, (2:7), butis rather defined through

the “subgap” (i.e., e<A) direct contribution to the conduc- 1+Rd a(£)?]
tance takes the form Im{sin 00(8)]}2:f. (3.6
0= gur(s) = 2NNTR This notwithstanding, the overall implication is still that for
ar (2—Tn)2—4(1—Ty)(Im{sin 6y(£)1})? eV=<A we can effectively consider all Andreev reflections as
occurring at the N-dot interface rather than at the dot-S
+0(7), 3.3 interface—the dot is indeed acting as though it were itself a

while the diffusion contributiorgp; is of order»? and thus ~ SuPerconductor.
negligible. As the energy is increased above the gap, the e have numerically solved Eq&2.178—(2.179 for the
density of states returns to its normal state value, and cons@&ifing angled(e), and used this to compute the Andreev

quently 8()—0 to leading order. Foe>A the direct term conductance versus voltage. In Figs. 4 and 5, we plot the
) e . . : . . calculated conductance vs voltage curves for various values
is negligible[being proportional to si)], while the diffu-

sion term aives the normal state conductance: of Ty, and compare to what would be expected from the
9 ' BTK theory for a simple N-S interface. We find an excellent
9=0gir(e) = NyTn+O( 7). (3.4  agreementin the case 0t<1 (see Fig. 4even for voltages
_ _ ~above the gap in the dot. Such an agreement is not un-
The above considerations become extremely suggestiviiely, as forTs<1 the dot density of states is BCS-like, and

when one considers the cagg= 1. There is a perfect con- consequently the effective Andreev phasés just equal to
ductance doubling for voltages below the effective gap the usual Andreev phase. In the opposite case of a trans-
while at higher voltages the conductance drops to its normgbarent contact to the superconductéig. 5), clear devia-
state value: tions from the BTK line shapes are seen. These deviations

ON ~ result completely from the fact that+ «, which is to be
_ N fore<A expected as the dot density of states in this case is quite
9= ~ (3.5 :
Ny fore>A. different from the BCS form.

o _ _ _ The “induced superconductivity” effect in the dot also
This is precisely what would be expectiédhe normal point  manifests itself in other ways. A straightforward calculation
contact were in perfect contact with a bulk superconductofn, the limit Ty—0 shows that the Andreev conductance be-
having a gapA—conductance doubling would be expectedcomes proportional to the dot density of states, i.e.,
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(DC . Z _ ZTerg
(E)—C \/E _CVT’ (3.7

erg

wherergis the ergodic time an@ is a geometry dependent
constant of order unity. This is the same critical field re-

quired to close the gap. Note that, unlike a conventional
BCS superconductor, where the critical field is proportional
to the gap, in the present case E§.7) implies that the

critical field is proportional t0\/z.

The conclusions reached here are markedly different from
what would be expected from a naive trajectory-based semi-
classical analysi&’ Consider the situation of a ballistic dot
with no tunnel barriers, wherds>Ny . In the semiclassical
picture, electrons entering the dot from the normal lead typi-
cally bounce off the walls of the dot several times before
hitting the superconductor, where they Andreev reflect. At
V=0, holes are the time-reversed partners of electrons; thus,
when an Andreev reflection occurs, the hole will retrace the
path of the incoming electroand cancel its acquired phase.
culated curves for, from top to bottorliy=1,0.9,0.75. The dashed Andreev trajectories will thus interfere constructively, lead-
curve shows the BTK result foFy=1.0; close agreement is found Ing _to a large conductanc_e enhanc_;emem/ato _and a non-
for all values ofT . The dot density of stateshown in the inset  Vanishing average reflection amplitudie,e). This enhance-

in this case resembles a BCS density of states. The voltage is meB€nt should be lost, however, as the voltage is increased—at
sured in units ofEg, the inverse of the escape time to the super-finite V, electrons and holes are no longer degenerate, and

conductor{cf. Eq. (3.2)]. the phase acquired by the hole will not precisely cancel that
acquired by the electron. The presence of a residual phase

_ . 0¢p=eVU(hvg) (wherel is the length of the trajectoyy
Re cos(f)]; thus, the Andreev conductance becomes equivayjj |ead to destructive interference and a consequent de-

lent to a conventional superconductor tunneling density otrease in the conductance. In this picture, even a small volt-

states measurement. We have also calculated the magnefige should impair the conductance enhancement seen at zero
field dependence of the Andreev conductance in the limit ofoltage.

small » (see the Appendix here too, our results are consis-  To make this picture quantitative, we may use the fact
tent with a picture in which the dot itself acts as a superconthat our exact random matrix theory indicates that the con-
ductor. The conductance enhancement at zero field remaingctance belowh is proportional to|(r,¢)|? [see Eq/(3.3)].
constant until a critical fluxbc given by Using the semiclassical Andreev phakg=eVL/(Zvg) and

the fact that path lengths in chaotic systems have an expo-
nential distribution functiorP(L)=exp(L/L)/L,?® we esti-
mate the average of the semiclassical reflection amplitude as

! 2
eV/ES

FIG. 4. Conductance versus voltage fog=10*Ny, Ty=0.1,
illustrating the “local Andreev reflection” effect, in which the dot

itself acts as a superconductor having a dagsolid lines are cal-

<rhe>SCZJ dLeeVHivep(L)= (3.9

1-ieVUhvg'

whereL is the mean path length to the superconductor; for a
ballistic dot, we have =vg 75 os.. HENCE,

27-1

1+ , (3.9

|<rhe>|2:

where we have used =cfi/7s o [See Eq.(3.1)] with c
=0.6 in the case of a perfect contact to the superconductor.
The semiclassical approach thus predicts tkate)|> (and
hence the Andreev conductanell fall off with voltage as

illustrating the “local Andreev reflection” effect. Solid lines are a Lorentzian foeV<A. This is clearly at odds with our fully

calculated curves for, from top to bottorfiy=1,0.9,0.75; dashed quantum mechanical calculation B= 1, which shows that

curves show BTK result for same valuesTof. The differences in  |{rne)|?=1 for all voltages belowA. We return to the dis-
the dot density of statdshown in the insetfrom a BCS density of ~ crepancy between the semiclassical and quantum mechanical
states lead to large differences from the BTK line shapes. calculations in the next subsection.

FIG. 5. Conductance versus voltage fdg=10*Ny, Ts=1,
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dynamics® In the first case, there is a power law distribution
of path lengths, meaning that there is an appreciable prob-
ability of finding long paths. Even for small voltages, these
long paths will quickly acquire a random phase, leading to
destructive interference and a reduction of the conductance.
In contrast, chaotic systems have an exponential distribution
of path lengths—Ilong paths are quite rare. In this case, small
voltages will not be able to cause any significant phase ran-
~e—___  domization, and thus there will be no resulting destructive
: interference of Andreev trajectories.

Although the semiclassical reasoning in terms of path
________ lengths presented here provides a qualitative account for the
difference between the chaotic and integrable Andreev con-
ductance line shapes, attempts to translate it into a quantita-
tive theory have not been successful. As was demonstrated in
0 1 > 3 4 5 the previous section, a simple semiclassical theory for the

eVTEs chaotic case fails to recover the correct line shape. A similar
problem is encountered when one tries to do the analogous
calculation for the integrable case—such a calculation pre-
dicts that the Andreev conductance should fall off quadrati-
cally with voltage, albeit at a faster rate than in the chaotic
case. This behavior is clearly at odds with our exact calcu-
lation showing a linear dependence on voltage. In many
ways, the failure of a semiclassical approach is not surpris-
ing. It is known that semiclassical approximations are unre-
liable in superconducting systems, as the usual diagonal ap-
B. Integrable Dot proximation is worse than for normal systefrs.

In this subsection, we examine the conductance of a Finally, we note that there is a striking connection be-

N-dot-S system where the classical dynamics of the dot arg}qveen the Andreev conductance’s sensitivity to the nature of
integrable. Previous studieShave indicated that the prox- Le dOIhS claﬁslﬁatlhdynatmgﬁﬂaréd Weak loc?':%ﬁ'r? nt.tr:t has
imity effect in the density of states is very different for cha- een st_ov¥_n Idod e%re IC fr':h experllznlen a}_ i atthe

otic and integrable billiards; in the latter, there is no induced29netic Tield dependence ot the weak locailzation correc-

gap, but rather the density of states tends to zero linearly jon of a quantum dot with two normal leads is very different

Er. We argue here that the proximity effect's strong sensi or chaotic versus integrable dots. In the chaotic case, one
F . -

tivity to chaos versus integrability also manifests itself in thef'nds a smooth Lorentzian field dependence, while in the

Andreev conductance integrable case a much sharper profile is found, with a cusp

We consider two different integrable systems: a rectangu‘:ﬂ zero magnetic field. The §|m|lar|ty betv_vee_n th_e Andre_ev

-gonductance effect and that in weak localization is not coin-

narrow leads to both a normal metal and a superconductof;,'demall;j bott;\ effects rely on the interference of time-
there are no tunnel barriers. As in the previous subsectiof€VErsed pamns. S .

we consider the case where the width of the normal contact Desplte this strong similarity, it is W.Orth hoting that the

is much smaller than the width of the superconducting con-effeCt in the Andreev conductance is much more pro-

tact(see the inset of Fig.)6so that the normal contact serves nounce(_j. Here, the_ difference between fche chaotic and 'F“e'
as a probe of the proximity effect in the quantum dot Thegrable line shapes is more severe than in the weak localiza-
’ ion effect (i.e., the chaotic case is much flatter than a

S&?;%ﬁ?nngg vgﬁélﬁuﬁci?:n:y:é?crgslstﬁ: Zﬁﬂﬁgrgy ;nudmtizczg)}_orentziar). The magr\itude 'of the effect is also much !arger
ductance then follows from E@2.8). The number of modes In _the_ Andree\_/ case; the signature of chaos versus integra-
in the normal lead was fixed &ty =int(keW/ m):2° we av- bility is the entire conductancéself, not a quantum correc-
eraged results over small variations kn, which did not tion like weak localization. For this reason, the effect |n.the
Andreev conductance should be observable in a single

changeNy . Our results are displayed in Fig. 6; similar re- ample, whereas an ensemble average is required in the weak
sults are obtained if one changes the positions of the twi ocaIFi)za,tion case 9 q

point contacts.

The results for the two integrable systems are similar to
one ano_ther, and differ significantly from what was found for IV. REENTRANCE EFFECTS
a chaotic dot—as opposed to a flat subgap region followed
by a rapid drop-off, we have instead a gradual linear reduc- We shift focus in this section, and examine so-called re-
tion of the conductance with voltage. We argue that the difentrance phenomena in the Andreev conductance of a chaotic
ference exhibited here is generic for integrable systems. Thgeuantum dot. These effects are loosely defined by nonmono-
reason is the same as that given in Ref. 5 to explain théonic behavior of the conductance in either voltage or mag-
difference in density of states, namely, that the distributiometic field. They are well known in the case of diffusive NS
of path lengths is very different for integrable and chaoticsystems>'*where the word “reentrant” is used because the

T
N

1k — Rectangle | . . TTTm===-
—e— Circle
0.9} |~ =_Chaotic Dot

FIG. 6. Conductancéscaled byNy) vs voltage for a rectangular
dot and a circular dot, each witthy= 10, Ng= 30N, (shapes shown
in the inset, with the size of the normal lead exaggenatedch plot
was produced by averaging over small variation&€n. Unlike a
chaotic dot(dashed ling the Andreev conductance of the integrable
dots has no “plateau” foe V<A. The conductance of the rectangle
drops belowNy due to a weak localization correction. The energy
scaleEg is defined in Eq(3.2).
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Andreev conductance is the same as the normal conductance A. Ballistic contacts

at zero voltage and magnetic field, and at high voltage or i _ i

field, butnot for intermediate values. The theory developed N the absence of tunnel junctions, the equations deter-
here allows us to address this behavior using a scatteringNing the conductance simplify considerably. We find
approach, whereas previous approaches almost exclusively

made use of the quasiclassical Green function technique. In

what follows, we discuss the cases of ballistic conta@ts ( _ _ b(e)
=Tg=1) and tunnel contactsT(,Tg<1) separately. Qar(£) = 2Ny tar? 2 ) @
|
0 (E)ZN_ﬁ, COS{ 0(s)> “4Nyltar] (e)/2]|>+ Ng cog 8(s)1/{1+sin 6(e)}|? @2
w2 2 A(2)2=Q(e)? ' '
|
As discussed in the previous section, these two contribu- Ns 4NyNsg
tions to the Andreev conductance can be interpreted as rep- 9aift = (Nsum— Ns—3NN)N—N+ N (44D
sum

resenting two distinct physical consequences of the proxim-

ity effect. The direct ternyy; represents processes in which with the total conductance given ¥y
the dot mimics a bulk superconductor, with Andreev reflec-

tions effectively occurring locally at the N-dot interface. It Ny+ Ng
decreases monotonicallwith voltage and magnetic field, 0=0girt 9aif= (Ng+ NN)(l— N ) (4.5
going to zero at large voltages or magnetic fields. This re- o i sum i
flects the fact that the induced superconductivity effect is Plotted in Fig. 7 as a function &y /Ns are the zero field
sensitive to the averagesmplitudefor Andreev reflection, Valu€s 0fggir, Jair, and g, normalized by the high field
which is largest av=B=0. On the other hand, the diffusion conductance given by the classical form(da3). As Ny /Ng
term gqis increasesmonotonically withV and B, tending to 1S increased from zero, the total conductance initially de-

the classical result for two conductances in series: creases withgg; as the local Andreev reflection effect is
suppressed, while at larger values it starts to increase with

Oairs s the density of states B returns to its normal state

~ (2Ng)(Ny) value. AtNy=3Ng, we find that the total conductance at
9aift = Golass™ 2Ng+Ny - (43 ero field is the same as the classical result. Not surprisingly,
we find that reentrance effects in both magnetic field and

It represents a contribution from Andreev quasiparticles in/0ltage are maximized hefsee Fig. 8 o
the dot, and is thus sensitive to the dot's density of states. In !t IS instructive to make a comparison at this point to the
the present case of ballistic contacts, the density of Statﬁonmonotonlc reentrance behavior of diffusive NS systems

does not have any BCS-type peak and thus the diffusion terrf-€-+ @ diffusive normal metal in good contact with a super-
rises steadily with appliey or B. conductoy. In the diffusive case, the zero field and high field

Given that the direct and diffusion contributions react inonductances are the same, being equal to the normal state
opposite fashions to an increaseMror B, it is not surprising

that a nonmonotoni¥ or B dependence of the total conduc- == Direct
tance can be found if the relative strengths of these two terms 18 e ol
are varied. The latter can be achieved by tuning the ratio of 16f WEREERE

Nn/Ng. If Ny<<$Ng, the direct term will be dominant at
V,B=0, and we expect a monotonic decreaseGofas a
magnetic field or finite bias are applied. In the opposite limit
Nn>>Ng, the diffusion term dominates &t,B=0, andG is

Classical,
(S}
T

expected to increase witif or B. A nonmonotonicV or B 30_8, . geoe
dependence can thus be anticipated in the intermediate re- R
gime whereNy andNg are comparable. oo - W ]
To quantify the competition between the direct and diffu- 04r - ‘f;"{; , AR
sion contributions, we examine these term¥atB=0. This 0.2 Rl L S AL
is done by solving the self-energy equati@@sl53—(2.179 . R R R T Dt
to determinef(e), and then substituting this into Eqgl.1) 102 10" N 10' 10°
and(4.2). Letting Ng,,= N+ 6N\Ng+ N, we obtain NS

FIG. 7. Plot of the direct and diffusion contributions to the

N =0,B=0 conductance as a function Nf,/Ng for transparent point

Jair=(Num— Ng— Np)—2 — 2Ng, (4.49  contacts Ty=Ts=1). At Ny=Ny/2, the totalV=0,B=0 conduc-
Ny tance is the same as the classical regyl.-
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sufficient to consider the conductance to lowest nonvanish-
ing order inTy and Tg. Of particular interest here is the
well-known “reflectionless tunneling” effeét—the V
=0B=0 Andreev conductance of a N-I-N-I-S structure
(where | is an insulating region having transmissibn is
found to be proportional td@, not to T? as one has for a
single barrier. It is as though the Andreev reflected hole is
not reflected at all by the tunnel barriers. A similar effect
occurs for a N-I-S system where the normal region is suffi-
ciently disordered. The origin of this striking behavior is
now understood to be the constructive interference of trajec-
tories that reflect many times between the two barriers, lead-
ing to a fraction~T of the conductance channels being open
(i.e., having a transmission probability close to upity

In the present case, we are able to examine the effects of
finite voltage and magnetic field on reflectionless tunneling
when a quantum dot separates the barriers. At large voltages

FIG. 8. Plot of the excess conductafiggB,V) — 0uasd/Jeass@S  OF Mmagnetic fields, the pairing anghée) tends to its normal
a function ofB atV=0, showing nonmonotonic behavior. From top state value of 0, and we find that the conductance is given to
to bottom, curves are foNy/Ns=0.39,0.45,0.54,0.68. The inset leading order by the classical series addition formula
shows the excess conductanceBat0 as a function of voltage;

from top to bottom, curves are fo¥y /Ng=0.49,0.51,0.57,0.6. In 1 )

general, reentrance effects are maximizedgf Ng=0.54, where ENSTS (NnTn)

the V=0B=0 conductance is the same as at lavger B. Jolass I . (4.6)
. SNSTE+NyTy

conductance. The lack of any change due to superconductiv- 2

ity at V=B=0 is usually explained as an exact cancellation 2 o 1 2 .
of the conductance doubling effect of Andreev reflection byFoer yasgesijjg%’:tglst;eTep:glise E)r%ce?rss}eleeNcst-irosrileL;rsmEJ en_
a suppression of the density of states at the Fermi energy. E:]elin contribut,ion here as the necessary constructive inter-
conductance enhancement is, however, found at finite volt: g co ’ ry .

_ 5 . e erence is lost when electron-hole degeneracy or time-
age, roughly aeV=E=AD/L", whereD is the diffusion . o oo "o mmetry is broken. Below we show that
constant and. is the length of the normal metal. Quasiclas- Y y '

sical calculations find maximum conductance enhancemen erctlonIese tunnellng'does survive at small valueB ahd
o KE , and describe how this contribution evolvesBaandV are
on the order of 10% of the normal state conductarice.

increased.

In the present system, we can tune the relative signifi- . .
cance of the Andreev reflection enhancement and density of We begin by solving Eqs(2.179—(2.179 for the self-

states suppression terms by varyiNg/Ng. We find that oo 9Y ;[0 lowest order :ﬁ’\l')’TS for B=0; we find the pair-
nonmonotonic effects are maximized when we adjust thigd andie 1s given simply by
ratio to mimic the diffusive system, by insisting that the zero

field and high field conductances are the same; this occurs at 0(e) =arcta76
Nn=1/2Ng. The conductance maximum in voltage is

smaller however, being on the order of Wk, and occurs g 04 are the inverse escape times to the superconductor

roughly ateV=Es=Nsd/2. This is the inverse of the time 5 1\rmal metal leads, respectively, and are defined by
needed to escape to the superconductor, and is thus the ana-

log of E7 in the diffusive system, WhICh represents the in- N NI
verse of the time needed for a particle to diffuse across the En= , Eg= .
normal metal and reach the superconductor. Note also that if 2m 2m

the normal lead is removed the size of the induced &ap Using this result ford(e), we next write Eqs(2.239 and
the dot density of states isEs. (2.23h for the conductance to lowest order Tiy, Ty . The

Finally, we also find pronounced nonmonotonic behaviordirect contributiong, corresponds to Andreev reflection at
in magnetic field for this range dfiy/Ns, with the magni-  the N-dot interface and is of ordef?. The only orderT

tude of the effect being larger than that in volta@ég. 8.  contribution is found in the diffusion tergy , which yields
The maximum conductance occurs roughly at a fibg

Es
En—

(4.7)

4.9

given by Eq.(3.7), the same flux that would be required to E.E2
close the gap in the density of states in the absence of theg .. (¢)=NyTy= NS \/~ +0(T?),
normal lead. E%(e) V E%(e)+E3+E3—&?
4.9
B. Tunnel regime where we have defined

We turn now to the case where both point contacts con- _ 2 2 a2 o1
tain opaque tunnel barrier §, Ty<1). In this regime, it is E(e)=[(Es—Ey—&“)"+4(EsEn)]™ (410
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have also found that adding strong tunnel barriers makes a
j diffusive normal wire with many channels equivalent to a
quantum dot.

V. CONCLUSIONS

We have studied the voltag®) dependence of the An-
dreev conductance of chaotic and integrable quantum dots;
we have also examined the magnetic figd)l dependence in
the chaotic case. In the regime where the contact to the su-
perconductor dominates, we find that the voltage dependence
of the Andreev conductance is extremely sensitive to the
: ‘ . ‘ . : nature of the dot’s classical dynamics—in the chaotic case,

o 05 1 15 2. 25 3 35 4 f[he_: glpt itself r_nimics a supercondL_Jctor a_nd the conductance
s is initially flat in voltage, whereas in the integrable case the

FIG. 9. Conductance vs voltage in the tunnel regifag=Ts  conductance falls off linearly with voltage. This effect is
=0.01, exhibiting the enhancement of reflectionless tunneling atdrge in that the entire conductance forms the signature of
finite voltage. The parameteris defined as the ratibly/Ng. The ~ €haos vs integrability; also, it does not require any ensemble
inset shows th&/=0 conductance as a function of magnetic field averaging to be done. Both these facts make it particularly
for the same parameter choices. amenable to experiments using semiconductor quantum dots,

where a good contact between dot and superconductor can be

Equation(4.9) gives the complete voltage dependence ofachieved in samples having a fixed dot sh{y€.These ex-

-----
~

n

1
oo
oo
w o,
w
;

o 000

the reflectionless tunneling effect. M=0, it reduces to periments typically employ Nb for the superconducting con-
tact, while the quantum dot is defined in a two-dimensional
(NNTr)2(NgTg)? electron gas residing in an InAs layer.
Qair(0) = > PRy (4.1 We have also studied nonmonotonic reentrance phenom-
[(NNTN)“+(NsTs)“]

ena in theV andB dependence of the Andreev conductance
of a chaotic dot. We find that such behavior is ubiquitous,
and is the result of two competing processes—Andreev re-
Hlection at the dot—normal-lead interface, which decreases as
V or B increases, versus quasiparticles being injected into the
%Iot, which increases wit’ andB.

which is similar to the formula found in Ref. 32, generalized
to the case where the point contacts have different width
Depending on the relative magnitudes B and E,, the
conductance drops monotonically with voltage, or shows
maximum arounceV=Eg (see Fig. 9. The location of the
maximum is ateV=\7/6Es if Es>Ey . Similar behavior is
found for the magnetic field dependence of the conductance ACKNOWLEDGMENTS
(see the inset of Fig.)9

It is easy to understand the origin of this nonmonotonic We thank C. W. J. Beenakker for a useful discussion.
behavior within our theory. Whehls becomes larger than A.C. acknowledges the support of the Olin Foundation and
Ny, the effect of the superconductor on the dot density othe Cornell Center for Materials Research. This work was
states becomes significant. As we have seen in Sec. II, th@ipported in part by the NSF under Grant No. DMR-
induced density of states will have a sharp pea€atvhen =~ 9805613.
Ts<1; it is this peak that is manifesting itself in the conduc-
tance.

It is interesting to note that E¢4.9) has the same form as APPENDIX: CALCULATING THE ANDREEV
was found for a diffusive N-I-N-I-S system using a quasi- CONDUCTANCE FOR B#0

classical Green's function approathin that system, the In this Appendix, we outline the method used for calcu-
quantum dot is replaced by a diffusive normal wire of length|ations at nonzero magnetic fieBl Formally, the magnetic

d, width W, and mean free path and the normal and super- fie|d enters the model in a different fashion from a voltage
conducting leads are not attached via point contacts, but aigfference. The latter is dealt with by the fact that the An-
also wires of the same width. In the limfty, Ts<I/d the  greey scattering matri§ defined in Eq(2.12 is an explicit
resistances of the tunnel barriers dominate, and an expressi@ction of energy. The field dependence, however, does not
identical to _Eq.(4.9) is obtained, but now the energies appear directly in the expression f@, but rather only
En.Es are given by emerges in the averaging procedure—as we use the Pandey-
Mehta distribution defined in Ed2.2), the ensemble of ran-
dom matrices is itself a function of field.

As in the calculation aB=0, the first step in obtaining
the conductance is to calculate the averaged matrix Green
wherevg is the Fermi velocity in the normal interbarrier function(G) defined in Eq.2.14a. The diagrams used are
region. This is identical to the definition &y andEgin Eq.  the same as in thB=0 case, but now use of the distribution
(4.9 if one takess to be the level spacing in the wire. Note (2.2) leads to a different self-energ}¥ in the Dyson
that this correspondence is not surprising; previous studiesquation:

hUF ﬁU;:
EN:TNHa Es= Tsﬁ, (4.12
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See (1-2y)2en Egh—Eﬁe 1 .
(e, y)=1y® (1-29)5 e S T—1=—M(N3Qs[5m(9)+zs]
. ®>\_2 (tr Geo) (27_1)<trgeh>) +NpQu[COg 6) + Zy ]
MZ M (2y—1)(tr Gpo) (tr Gup) , e

wherey is a function of magnetic fielfisee Eq.2.3)]. The
additional factors of (+2v) here reflect the fact that break- . S .
ing time-reversal symmetry suppresses off-diagonal super- The next step in the calculation is to sum diagrams for the
conducting correlations. Solving the Dyson equati@ri4a conductance. The hecessary dlqgram§ are the same as those
to leading order in M, we find that relationg2.159 and retained in theB=0' calculat!on(_Le.,_ direct and d!ffusmn
(2.15b continue to hold, meaning that we may stil param-f[erm.s)’ although their evaluatlon is different. The dlrec_:t term
etrize the self-energies in terms of a pairing ang(e, ) is still given by Eq.(2.233, but with 6(e, y) now determined

. - from Eq. (A2).
through Eq.(2.163. The equation determining(e,y) now e . .
takes the form The diffusion term acquires a form different from Eq.

(2.23h, as factors of (+2v) now appear in graphs where
NsQs— 2y sin(6) the particle-hole indices of upper and lower branches do not
@ o(e. V=0 "ire28 (A2)  match. These factors lead toM/corrections both to the
NQu e matrix inverse that arises when summing the diffusion lad-
whereQy and Qg are functions of9 defined in Eqs(2.17b der, and to the matrix prefactors of the ladder. As discussed
and (2.179. The 1M corrections to the self-energy in the earlier, such corrections are important when calculating the

presence of a magnetic field read conductance. The result is
|
2|2 272K | i 2 : 2 2
N (1=ZR)?Alsin(0)]*+ (TTy+ yI1g)[sin(6)|*+ T1 ¢ cog 6)|
Qan =8N 7 - e : (Ad)
where
Mg(0)=2((1+2Zy)?{1+2 R sir(0)]} +4Z\(1+ Zy)Re cod 0) ]+ 4Z%{|cod 0)|>— 2 R sirP(6)1}), (A5)
A(6,7y)=A(6)—12ysir?(6), (A6)
- B ) _ ~ Qunl? Qs?
Q(0,7)=Q(6)+4y{1-|cog 6)|*+4 R sir*(6) [}A(6,y) +8y NNZ_N YN(¢9)+NsZ—S Ys(0)+yYa(0) |, (A7)

Zy|? . . .
YN(0):( on 1){1— |cog 6)|%+ 4 R sir?( )]} — 2Z,{5 R sir’( ) R4 cog 6) ]+ Im[ sir?(8) ]Im[ cog ) ]}

+Z2{1—|cog 6)|?—2 Rd sir?()][ 1+ 2|cog 6)|?]}, (A8)
2
Ys(0>=(‘§ —[1-Zssin(6)|? |{1~|cog 6)|*+4 R sin’( 6) ]} — Z§|sin( 6)cog )|, (A9)
N
Y,(0)=1—|cog )|*{1+4 Resin(6)?]} + Rd 3 sirf( ) + 4 sirt( 6) ]+ 4|sin(0) | . (A10)

Here A(0), Q(6), I1y(6), andIlg(6) are given by Eqs(2.229—(2.229. The above equations, together with E42) for
0(e,v), determine the Andreev conductance for arbitrary voltage and magnetic field.
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