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Andreev conductance of chaotic and integrable quantum dots

A. A. Clerk, P. W. Brouwer, and V. Ambegaokar
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853

~Received 20 April 2000!

We examine the voltageV and magnetic fieldB dependent Andreev conductance of a chaotic quantum dot
coupled via point contacts to a normal metal and a superconductor. In the case where the contact to the
superconductor dominates, we find that the conductance is consistent with the dot itself behaving as a
superconductor—it appears as though Andreev reflections are occurring locally at the interface between the
normal lead and the dot. This is contrasted with the behavior of an integrable dot, where for a similar strong
coupling to the superconductor no such effect is seen. The voltage dependence of the Andreev conductance
thus provides an extremely pronounced quantum signature of the nature of the dot’s classical dynamics. For the
chaotic dot, we also study nonmonotonic reentrance effects that occur in bothV andB.
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I. INTRODUCTION

Though the actual process of Andreev reflection is sim
to describe—an electron in a normal metal incident on
superconductor is reflected back as a hole1—it serves as the
fundamental basis for some of the most striking effe
known in mesoscopic physics.2 In particular, Andreev reflec-
tion may be viewed as the phenomenon underlying the p
imity effect, in which a superconductor is able to strong
influence the properties of a nearby normal metal. Andr
reflection is also the process responsible for the unique c
ductance properties of normal-superconducting~NS! junc-
tions, such as the conductance enhancement observed i
point contacts.

Attention has recently turned to so-called Andreev b
liards as ideal systems in which to study the proxim
effect.3–10 Such systems consist of an isolated normal me
region, small enough that electrons remain phase cohe
within it ~i.e., a quantum dot!, coupled weakly through a
point contact to a superconducting electrode. Calculation
the density of states in such structures have shown, ra
remarkably, that the proximity effect is sensitive to the n

ture of the classical dynamics—a gap of sizeD̃ in the spec-
trum is present in the case of a chaotic billiard, whereas
the integrable case the density of states vanishes linear
the Fermi energy.5,7

In the present work we also focus on the Andreev billia
but now add a second point contact leading to a nor
electrode and investigate the Andreev conductance of
resulting structure. The Andreev conductance is the differ
tial conductancedI/dV at voltages smaller than the supe
conducting gap in the S electrode, where Andreev reflec
at the interface between the normal metal dot and the su
conductor is the only current carrying mechanism. Unl
previous studies,11,12 here we calculate the full voltage~V!
and magnetic field~B! dependence of the conductance.

Two questions are of particular interest in this stud
First, does the sensitivity of the proximity effect to chao
versus integrable dynamics, as seen in the density of st
also manifest itself in the Andreev conductance? We fi
that indeed it does. In the case where the contact to
PRB 620163-1829/2000/62~15!/10226~12!/$15.00
e
a

s

x-

v
n-

NS

-

l
nt

of
er
-

in
at

,
al
he
n-

n
er-

.

es,
d
e

superconducting electrode is much wider than that to
normal electrode, theV and B dependent conductance of
chaotic dot is consistent with assuming that the dot has it
become superconducting. The conductance is doubled
respect to the normal state, and remains bias indepen
until eV reaches the induced gapD̃ in the Andreev billiard.
This is in sharp contrast to what is found in exact calcu
tions for integrable dots. For both rectangular and circu
dot geometries, the conductance drops off linearly with vo
age without any plateau nearV50. We argue that this dif-
ference is ubiquitous for integrable versus chaotic system

The second motivation for the present study is the qu
tion of reentrance effects—is the behavior of the cond
tance simply monotonic inV andB? In the case of a diffu-
sive NS junction, it is well known that this is not th
case.13,14At zero voltage and also at voltages large enough
break electron-hole degeneracy, the conductance of the j
tion is the same as in the normal state. However, a cond
tance enhancement does occur at intermediate voltages
examine reentrance effects in the conductance of chaotic
dreev billiards, both in the case of ballistic contacts and
the case where both point contacts contain opaque tu
barriers.

The remainder of this paper is organized as follows.
Sec. II, we present our model for the chaotic dot and int
duce the technique used to calculate the voltage and
dependent Andreev conductance. In Sec. III, we discuss
sults in the case where the contact to the supercondu
dominates the contact to the normal electrode, and con
the results for a chaotic billiard with exact quantum mecha
cal calculations for two integrable systems. In Sec. IV,
discuss reentrance effects. We conclude with a synopsi
our key results in Sec. V.

II. MODEL AND TECHNICAL DETAILS

A. Formulation of the problem

We consider a chaotic quantum dot coupled via point c
tacts to a normal metal and a superconductor having, res
tively, NN andNS propagating modes at the Fermi energyEF
~see Fig. 1!. We assume that the ergodic time is much shor
10 226 ©2000 The American Physical Society
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than other relevant time scales of the dot~i.e., the inverse
superconducting gap\/D and the dwell time!, so that ran-
dom matrix theory15 ~RMT! may be used to describe it
transport and spectral properties. In RMT, the Hamilton
of the dot is represented by anM3M Hermitian matrixH,
which, at zero magnetic field, is real symmetric and a me
ber of the Gaussian orthogonal ensemble:

P~H !5expS 2
1

4
Ml22tr H2D . ~2.1!

The matrix sizeM is sent to infinity at the end of the calcu
lation. The energy scalel is related to the mean level spa
ing 2d by l52Md/p. More specifically, 2d is the mean
level spacing for particlelike excitations in the absence
coupling to the superconductor; with the superconductor,
relevant excitations are of mixed particle-hole type, and h
a level spacingd for excitation energies much larger than t
gap energy.

In the case of a nonzero magnetic field, the Hermit
matrix H is a member of the Pandey-Mehta distribution:15,16

P~H !}exp2S M ~11g2!

4l2

3 (
i , j 51

M

@~ReHi j !
21g22~ Im Hi j !

2# D . ~2.2!

As g increases from 0 to 1, the distribution evolves from o
with complete time-reversal symmetry~Gaussian orthogona
ensemble! to one with no time-reversal symmetry~Gaussian
unitary ensemble!. The parameterg may be related to the
magnetic fluxF through a two-dimensional dot having are
A17,18

Mg25CS F

F0
D 2 \vF

AAd
, ~2.3!

whereF05hc/e is the flux quantum,vF is the Fermi veloc-
ity, andC is a constant of order unity.

The normal (NN1NS)3(NN1NS) scattering matrixS(«)
of the system at an energy« aboveEF can be expressed i
terms of the matrixH:19

S~«!5122p iW†~«2H2 ipWW†!21W

5S r NN~«! tNS~«!

tSN~«! r SS~«!
D , ~2.4!

whereW is an M3(NN1NS) matrix representing the cou
pling between the point contacts and the dot, having e
ments

FIG. 1. Schematic drawing of a dot coupled via point contacts
a normal metal and a superconductor.
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p
~2Md!1/2S 22Tn22A12Tn

Tn
D 1/2

5dmnS l

p
ZnD 1/2

. ~2.5!

The Tn are the transmission probabilities for each mod
which we take simply asTN for modes coupled to the norma
electrode andTS for those coupled to the superconductin
electrode~this in turn definesZN andZS).

For voltages below the excitation gapD of the supercon-
ductor, electrons and holes incident on the d
superconductor interface may be Andreev reflected. In
case scattering from the dot, as seen from the normal m
contact, can be represented by a 2NN32NN scattering ma-
trix S:

S5S r ee~«! r eh~«!

r he~«! r hh~«!
D . ~2.6!

Here, r he(«) is the NN3NN matrix describing the Andreev
reflection of an incoming electron in the N point contact
an outgoing hole in the same lead;r eh(«), r ee(«), and
r hh(«) are defined analogously. These matrices may be w
ten in terms of the submatrices of the normal scattering m
tricesS(«).2 For r he(«) one has

r he~«!5tNS* ~2«!Mee~«!a~«!tSN~«!, ~2.7!

with

Mee~«!5@12a~«!2r SS~«!r SS* ~2«!#21,

a~«!5exp@2 i arccos~«/D!#.

For voltages below the gapD in the S electrode, the zer
temperature conductance of the system is given by
Tabikane-Ebisawa formula20

G~eV!5
4e2

h
tr r he

† ~eV!r he~eV!. ~2.8!

We wish to calculate the ensemble-averaged Andr
conductance of the dot for arbitrary values of voltageV and
magnetic fieldB; previous studies focused exclusively on t
cases whereV,B were 0 or large enough to completely bre
the symmetry between electrons and holes. To this end,
first rewrite Eq.~2.6! in a manner that is formally equivalen
to the normal state expression~2.4!. Letting VS5pWSWS

†

and VN5pWNWN
† , we define the 2M32M effective

particle-hole Hamiltonian4,8

H5S H 0

0 2H* D , ~2.9!

and the self-energies from the leads

SN
0 ~«!52 i S VN 0

0 VN
D ,

SS
0~«!52

D

AD22«2 S ~«/D!VS VS

VS ~«/D!VS
D . ~2.10!

o
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10 228 PRB 62A. A. CLERK, P. W. BROUWER, AND V. AMBEGAOKAR
With these definitions in place, a direct algebraic manipu
tion shows that the particle-hole scattering matrixS in Eq.
~2.6! can be expressed in terms of the effective retar
Green functionGR ,

GR~«!5@«2H~«!2SN
0 ~«!2SS

0~«!#21, ~2.11!

by

S~«!5122p i S WN
† 0

0 WN
† D GR~«!S WN 0

0 WN
D .

~2.12!

The major simplification offered by Eq.~2.12! compared
to Eq. ~2.6! is that it allows one to compute the conductan
in a manner analogous to that used in the normal state, a
now demonstrate. From this point onward, we focus on
caseD@«,eV. In this regime, the properties of the syste
become independent of the specific details of the super
ductor. Calculations retaining a finiteD will be presented
elsewhere.21

B. Details of the calculation:BÄ0

We proceed to average Eq.~2.8! for the Andreev conduc-
tance over the Gaussian orthogonal ensemble defined by
~2.1!, which is the appropriate ensemble for zero magne
field. We make use of the relation

^Hi j Hkl&5~d ikd j l 1d i l d jk!
l2

M
. ~2.13!

By expressing the scattering matrix in terms of the Gre
function G, the trace appearing in the conductance form
may be represented as a standard ‘‘conductance bubble’’
gram ~see Fig. 3 below!. Further, at this stage of the calcu
lation l2/M is taken to be a small parameter, meaning t
the usual diagrammatic technique for impurity averag
may be used. To obtain the leading-order result

FIG. 2. ~a! Definition and diagrammatic representation of t
unaveraged Green function. This is a 2M32M matrix; n,m refer to
mode indices, whilei ,i 8 are electron-hole indices which can tak
one of two values (e or h). ~b! The effective HamiltonianH is
represented by a cross; the dashed lines indicates averaging~c!
Diagrammatic Dyson equation; the double line is the avera
Green function̂ G&. ~d! Self-energy to leading order in 1/M ; the
neglected higher order terms correspond to graphs with cro
dashed lines. The intermediate indexm is to be summed over. Note
that S and hencê G& are diagonal in mode space but have o
diagonal terms in particle-hole space.
-
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1/NN,1/NS , we need only sum diagrams that have no cros
lines @lines indicate the averaging of matrix elements ofH
using the rule~2.13!; see Fig. 2 above#. Note thatl will be
sent to infinity only at the very end of the calculation; th
procedure corresponds to first taking the matrix size to in
ity while keeping a finite bandwidth, and thenindependently
taking the bandwidth to infinity. This ordering of limits i
necessary to generate a well-defined perturbative expan

The first step in this framework is to calculate the av
aged matrix Green function̂G&. As in Refs. 5 and 8, we find
the following self-consistent Dyson equation:

^G~«!&5@«2SN
0 ~«!2SS

0~«!2S~«!#21, ~2.14a!

where the self-energy from averagingS is given by

S51M ^ S See Seh

She Shh
D 51M ^

l2

M S ^tr Gee& 2^tr Geh&

2^tr Ghe& ^tr Ghh&
D .

~2.14b!

In this equation, 1M denotes theM3M unit matrix, and^

denotes a direct product; it is pictured diagrammatically
Fig. 2. Having performed the summation of diagrams,
now let M⇀`, keeping«,d,NS , andNN fixed.

Three of the equations thus obtained relate the com
nents of the self-energy to one another:

See5Shh , Seh5She , ~2.15a!

Seh
2 2See

2 5l2. ~2.15b!

The last equation allows us to parametrizeS in terms of a
pairing angleu(«):

l sinu~«!52Seh~«!, ~2.16a!

l cosu~«!5 iSee~«!. ~2.16b!

The remaining self-energy equations now take the form

tan@u~«!#5
NSQS

NNQN2 ip«/2d
, ~2.17a!

d

ed

FIG. 3. ~a! Direct contribution to the Andreev conductance. T
trace appearing in Eq.~2.8! is represented by the bubble diagram
The double lines indicate the averaged Green function^G&. The
index n corresponds to a mode coupled to the normal contact
should be summed over.~b! Diffusion contribution to the Andreev
conductance.~c! Dyson equation for the 4M34M matrix D. Note
that upper and lower branches need to have matching mode ind
but not matching particle-hole indices.
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QN5
TN

2
$22TN@12cosu~«!#%21, ~2.17b!

QS5
TS

2
$22TS@11sinu~«!#%21. ~2.17c!

To obtain a unique solution of the self-energy equations
have imposed the boundary conditionSee(«)⇀2 il as
«⇀`; this represents the physical condition that we reco
a normal metal with a constant density of states at la
energies. The pairing angleu can is related the density o
states of the dot:

r~«!52
Im

p
tr ^G~«101!&5

Re$cos@u~«!#%

d
; ~2.18!

u5p/2 corresponds to a fully superconducting state, wh
u50 corresponds to the normal state. It is interesting to n
the analogy betweenu(«) and the pairing angle used in th
quasiclassical theory of dirty normal-superconduct
interfaces22 and in the circuit theory of Andreev
conductance.23 In the present case, the normalization con
tion ~2.15b! does not need to be externally imposed, but i
direct consequence of the averaging procedure.

While the leading-order solution of the self-energyS is
sufficient if one is interested only in the density of states~as
in Ref. 8!, the conductance calculation requires thatNS /M ,
NN /M , and«/Md corrections to Eq.~2.15b! be calculated.
This correction may be expressed in terms of the lead
order self-energy solution:

Seh
2 2See

2

l2
2152

1

M S NSQS@sin~u!1ZS#

1NNQN@cos~u!1ZN#1 i
p«

2d D .

~2.19!

Having computed the self-energy from averagingS and
thus the average Green function^G&, we can proceed to sum
diagrams for the conductance. In analogy to the usual im
rity technique,24 two sets of contributions arise@see Fig.
3~a!# to leading order:G5(4e2/h)(gDir1gDiff ). The first is a
direct contribution which is completely determined by^G&,
that is, by the ensemble-averaged probability amplitu
^r he&:

gdir5~2p!2 tr WN
† ^G&WNWN

† ^G&†WN5tr ^r he&^r he&
†.
~2.20!

This contribution may be interpreted as arising from A
dreev reflections that effectively occur at the interface of
normal lead and the cavity. The second contribution is du
the fluctuations ofr he :

gdiff5^~r eh2^r eh&!~r eh2^r eh&!2&. ~2.21!

It describes the current carried by quasiparticles in the
that are Andreev reflected at the interface of the dot and
superconductor. Diagrammatically, it is equivalent to a d
fusion ladder, where the averaging links the upper and lo
branches of the conductance bubble@see Figs. 3~b!–3~d!#.25
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We ignore here quantum corrections, which are forma
smaller by a factor of max(1/NN,1/NS). Note that in comput-
ing the diffusion sum each individual graph is of order 1/M ;
this means that terms of order 1/M must be retained when
computing the 434 matrix inverse arising from summin
the series. As with the calculation of the average Green fu
tion ^G&, we let M tend to infinity only after having per-
formed the partial summation of diagrams.

To present the results of the conductance calculation,
first define the following kernel functions:

L~«!52NNS 12UQN

ZN
U2

u11ZN cos~u!u2D
12NSS 12UQS

ZS
U2

u11ZS sin~u!u2D
22 Re$NNQN@ZN1cos~u!#

1NSQS@ZS1sin~u!#%1
p«

d
Im @cos~u!#,

~2.22a!

V~«!52NNuQN sin~u!u212NSuQS cos~u!u2,
~2.22b!

PN~«!52NNuQNu2$~116ZN
2 1ZN

4 !@11ucos~u!u2#

18ZN~11ZN
2 !Re@cos~u!#%, ~2.22c!

PS~«!52NSuQSu2$~116ZS
21ZS

4!@11ucos~u!u2#

18ZS~11ZS
2!Re@cos~u!#%, ~2.22d!

whereZN andZS were defined below Eq.~2.5!. With these
definitions, we find

gdir52NN

TN
2

u222TN sin2~u/2!u2
usin~u!u2, ~2.23a!

gdiff58NN
2UQN

2

ZN
U2

~L22V2!22@PNusin~u!u2

1~12ZN
2 !2Lusin~u!u21PSucos~u!u2#.

~2.23b!

Equations~2.22a!–~2.23b!, along with Eq.~2.17! for the self-
energyS, determine the ensemble-averagedB50 Andreev
conductance through the dot to leading order in 1/NN ,1/NS
for all voltages such thateV!D. The extension of these
formulas to nonzeroB is presented in the Appendix.

III. PROBING INDUCED SUPERCONDUCTIVITY VIA
CONDUCTANCE

A. Chaotic dot

In this section, we consider the situation where the c
pling between the dot and the superconductor is much st
ger than the coupling between the dot and the normal le
NNTN!NSTS . In this limit, the normal metal will only
weakly perturb the properties of the dot-superconductor s
tem; thus, we may view the conductance through the str



th
av

i

y
ro

n
1

th

rit
o

h

ce
s

b

,
y

-

th
ns

ti
-

m

to
ed

the
qua-
ote
n
e
-

or
r-

the

he

on-
no

f

ct–
the

the
nly
tion
at

r
as
t-S
lf a

v
the
lues
he
nt

n-
d

-

ons

uite

o
on
e-

.e.,

10 230 PRB 62A. A. CLERK, P. W. BROUWER, AND V. AMBEGAOKAR
ture as being a probe of the induced superconductivity in
dot. As mentioned in the Introduction, previous studies h
examined the density of states of such Andreev billiards
the absence of a normal lead.5 It was found for the case of a
chaotic dot that an energy gapD̃ opens up on a scale set b
the inverse of the time needed for a particle to escape f
the dot to the superconductor:

D̃5c~ES!, ~3.1!

ES5S \

tS esc
D5S NSTSd

2p D . ~3.2!

The parameterc is of order unity and a monotonic functio
of TS ; it varies from 0.6 in the case of no tunnel barrier to
in the case of an opaque tunnel barrier. It was also found
the shape of the density of states aboveD̃ was vastly differ-
ent in these two limits: in the tunnel regimeTS!1, the den-
sity of states was BCS-like, having a square-root singula
at D̃, whereas in the case of no tunnel barrier the density
states gradually increased aboveD̃. Note that the gapD̃ does
not depend on the gapD in the bulk superconductor, whic
was taken to infinity in the calculations.

The question that naturally arises here is how the indu
superconductivity seen in the density of states manifest
self in the conductance. Some insight may be obtained
considering Eqs.~2.23a! and ~2.23b! to lowest order in the
small parameterh5NNTN /NSTS . Without the normal lead
we have a gap in the dot density of states up to an energD̃.
As the density of states is proportional to Re$cos@u(«)#%, this
implies that Re@u(«)#5p/21O(h) for «,D̃ . Using this,
the ‘‘subgap’’ ~i.e., «,D̃) direct contribution to the conduc
tance takes the form

g5gdir~«!5
2NNTN

2

~22TN!224~12TN!„Im$sin@u0~«!#%…2

1O~h!, ~3.3!

while the diffusion contributiongDiff is of orderh2 and thus
negligible. As the energy is increased above the gap,
density of states returns to its normal state value, and co
quentlyu(«)⇀0 to leading order. For«@D̃ the direct term
is negligible@being proportional to sin(u)], while the diffu-
sion term gives the normal state conductance:

g5gdiff~«!5NNTN1O~h!. ~3.4!

The above considerations become extremely sugges
when one considers the caseTN51. There is a perfect con
ductance doubling for voltages below the effective gapD̃,
while at higher voltages the conductance drops to its nor
state value:

g5H 2NN for «<D̃

NN for «@D̃.
~3.5!

This is precisely what would be expectedif the normal point
contact were in perfect contact with a bulk superconduc
having a gapD̃—conductance doubling would be expect
e
e
n

m

at

y
f

d
it-
y

e
e-

ve

al

r

below the gap due to Andreev reflection, whereas above
gap the normal state conductance would be recovered as
siparticles would now carry the current. In this respect, n
that below the induced gapD̃ both the averaged reflectio
probability ^ur ehu2& and the averaged reflection amplitud
u^r eh&u are nonzero; foreV@D̃, the latter vanishes. Nonethe
less, in both cases~i.e., for voltages above and belowD̃),
Andreev reflection is the only current carrying process. F
energies belowD̃, the dot itself appears as if it were supe
conducting and Andreev reflection effectively occurs at
normal-lead–dot interface. For energies far aboveD̃, current
through the dot is effectively carried by quasiparticles in t
dot ~which are either electron- or holelike! which Andreev
reflect at the dot-superconductor interface.

The quantum dot continues to act as if it were a superc
ductor in the case where the contact to the normal lead is
longer perfect~i.e., TNÞ1); one need only note that, i
Im$sin@u0(«)#% is replaced by«/D̃, Eq. ~3.3! becomes identi-
cal to the Blonder-Tinkham-Klapwijk~BTK! formula for
the subgap conductance of a normal-point-conta
superconductor junction, where there is a tunnel barrier at
interface having transmissionTN .26 The BTK formula is de-
rived assuming there is no spatial separation between
sites of Andreev scattering and normal scattering; the o
energy dependence thus comes from the Andreev reflec
phasea(«), not from the lack of electron hole degeneracy
finite voltages. The replacement of«/D̃ by Im$sin@u0(«)#% in
Eq. ~3.3! means that the Andreev reflection phaseã in the
present case is not necessarily the usuala(«) given in Eq.
~2.7!, but is rather defined through

Im$sin@u0~«!#%25
11Re@ã~«!2#

2
. ~3.6!

This notwithstanding, the overall implication is still that fo
eV<D̃ we can effectively consider all Andreev reflections
occurring at the N-dot interface rather than at the do
interface—the dot is indeed acting as though it were itse
superconductor.

We have numerically solved Eqs.~2.17a!–~2.17c! for the
pairing angleu(«), and used this to compute the Andree
conductance versus voltage. In Figs. 4 and 5, we plot
calculated conductance vs voltage curves for various va
of TN , and compare to what would be expected from t
BTK theory for a simple N-S interface. We find an excelle
agreement in the case ofTS!1 ~see Fig. 4! even for voltages
above the gapD̃ in the dot. Such an agreement is not u
likely, as forTS!1 the dot density of states is BCS-like, an
consequently the effective Andreev phaseã is just equal to
the usual Andreev phasea. In the opposite case of a trans
parent contact to the superconductor~Fig. 5!, clear devia-
tions from the BTK line shapes are seen. These deviati
result completely from the fact thatãÞa, which is to be
expected as the dot density of states in this case is q
different from the BCS form.

The ‘‘induced superconductivity’’ effect in the dot als
manifests itself in other ways. A straightforward calculati
in the limit TN→0 shows that the Andreev conductance b
comes proportional to the dot density of states, i



iv
o

n
t o
s-
on
a

t
e-
l
al

om
mi-
t

l
pi-
re
At

hus,
the
.
d-

—at
and
hat
ase

de-
olt-
zero

act
on-

po-

e as

r a

tor.

nical

t

d
d

m
er

e

PRB 62 10 231ANDREEV CONDUCTANCE OF CHAOTIC AND . . .
Re@cos(u)#; thus, the Andreev conductance becomes equ
lent to a conventional superconductor tunneling density
states measurement. We have also calculated the mag
field dependence of the Andreev conductance in the limi
small h ~see the Appendix!; here too, our results are consi
tent with a picture in which the dot itself acts as a superc
ductor. The conductance enhancement at zero field rem
constant until a critical fluxFC given by

FIG. 4. Conductance versus voltage forNS5104NN , TN50.1,
illustrating the ‘‘local Andreev reflection’’ effect, in which the do

itself acts as a superconductor having a gapD̃. Solid lines are cal-
culated curves for, from top to bottom,TN51,0.9,0.75. The dashe
curve shows the BTK result forTN51.0; close agreement is foun
for all values ofTN . The dot density of states~shown in the inset!
in this case resembles a BCS density of states. The voltage is
sured in units ofES , the inverse of the escape time to the sup
conductor@cf. Eq. ~3.2!#.

FIG. 5. Conductance versus voltage forNS5104NN , TS51,
illustrating the ‘‘local Andreev reflection’’ effect. Solid lines ar
calculated curves for, from top to bottom,TN51,0.9,0.75; dashed
curves show BTK result for same values ofTN . The differences in
the dot density of states~shown in the inset! from a BCS density of
states lead to large differences from the BTK line shapes.
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S FC

F0
D5CA D̃

Eerg
5CAD̃terg

\
, ~3.7!

whereterg is the ergodic time andC is a geometry dependen
constant of order unity. This is the same critical field r
quired to close the gapD̃. Note that, unlike a conventiona
BCS superconductor, where the critical field is proportion
to the gap, in the present case Eq.~3.7! implies that the

critical field is proportional toAD̃.
The conclusions reached here are markedly different fr

what would be expected from a naive trajectory-based se
classical analysis.27 Consider the situation of a ballistic do
with no tunnel barriers, whereNS@NN . In the semiclassica
picture, electrons entering the dot from the normal lead ty
cally bounce off the walls of the dot several times befo
hitting the superconductor, where they Andreev reflect.
V50, holes are the time-reversed partners of electrons; t
when an Andreev reflection occurs, the hole will retrace
path of the incoming electronand cancel its acquired phase
Andreev trajectories will thus interfere constructively, lea
ing to a large conductance enhancement atV50 and a non-
vanishing average reflection amplitude^r he&. This enhance-
ment should be lost, however, as the voltage is increased
finite V, electrons and holes are no longer degenerate,
the phase acquired by the hole will not precisely cancel t
acquired by the electron. The presence of a residual ph
df5eVL/(\vF) ~where L is the length of the trajectory!
will lead to destructive interference and a consequent
crease in the conductance. In this picture, even a small v
age should impair the conductance enhancement seen at
voltage.

To make this picture quantitative, we may use the f
that our exact random matrix theory indicates that the c
ductance belowD̃ is proportional tou^r he&u2 @see Eq.~3.3!#.
Using the semiclassical Andreev phasedf5eVL/(\vF) and
the fact that path lengths in chaotic systems have an ex
nential distribution functionP(L)5exp(2L/L̄)/L̄,28 we esti-
mate the average of the semiclassical reflection amplitud

^r he&SC.E dLeieVL/\vFP~L !5
1

12 ieVL̄/\vF

, ~3.8!

whereL̄ is the mean path length to the superconductor; fo
ballistic dot, we haveL̄5vFtS esc. Hence,

u^r he&u25F11S eV

cD̃
D 2G21

, ~3.9!

where we have usedD̃5c\/tS esc @see Eq.~3.1!# with c
.0.6 in the case of a perfect contact to the superconduc
The semiclassical approach thus predicts thatu^r he&u2 ~and
hence the Andreev conductance! will fall off with voltage as
a Lorentzian foreV,D̃. This is clearly at odds with our fully
quantum mechanical calculation atTN51, which shows that
u^r he&u251 for all voltages belowD̃. We return to the dis-
crepancy between the semiclassical and quantum mecha
calculations in the next subsection.
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B. Integrable Dot

In this subsection, we examine the conductance o
N-dot-S system where the classical dynamics of the dot
integrable. Previous studies5,7 have indicated that the prox
imity effect in the density of states is very different for ch
otic and integrable billiards; in the latter, there is no induc
gap, but rather the density of states tends to zero linearl
EF . We argue here that the proximity effect’s strong sen
tivity to chaos versus integrability also manifests itself in t
Andreev conductance.

We consider two different integrable systems: a rectan
lar dot and a circular dot. In each case, the dot is coupled
narrow leads to both a normal metal and a superconduc
there are no tunnel barriers. As in the previous subsect
we consider the case where the width of the normal con
is much smaller than the width of the superconducting c
tact~see the inset of Fig. 6!, so that the normal contact serve
as a probe of the proximity effect in the quantum dot. T
scattering matrix of the system is computed by numerica
matching wave functions across the structure, and the c
ductance then follows from Eq.~2.8!. The number of modes
in the normal lead was fixed atNN5 int(kFW/p);29 we av-
eraged results over small variations inkF , which did not
changeNN . Our results are displayed in Fig. 6; similar r
sults are obtained if one changes the positions of the
point contacts.

The results for the two integrable systems are similar
one another, and differ significantly from what was found
a chaotic dot—as opposed to a flat subgap region follow
by a rapid drop-off, we have instead a gradual linear red
tion of the conductance with voltage. We argue that the
ference exhibited here is generic for integrable systems.
reason is the same as that given in Ref. 5 to explain
difference in density of states, namely, that the distribut
of path lengths is very different for integrable and chao

FIG. 6. Conductance~scaled byNN) vs voltage for a rectangula
dot and a circular dot, each withNN510, NS530NN ~shapes shown
in the inset, with the size of the normal lead exaggerated!. Each plot
was produced by averaging over small variations inEF . Unlike a
chaotic dot~dashed line!, the Andreev conductance of the integrab

dots has no ‘‘plateau’’ foreV,D̃. The conductance of the rectang
drops belowNN due to a weak localization correction. The ener
scaleES is defined in Eq.~3.2!.
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dynamics.28 In the first case, there is a power law distributio
of path lengths, meaning that there is an appreciable p
ability of finding long paths. Even for small voltages, the
long paths will quickly acquire a random phase, leading
destructive interference and a reduction of the conducta
In contrast, chaotic systems have an exponential distribu
of path lengths—long paths are quite rare. In this case, sm
voltages will not be able to cause any significant phase r
domization, and thus there will be no resulting destruct
interference of Andreev trajectories.

Although the semiclassical reasoning in terms of p
lengths presented here provides a qualitative account for
difference between the chaotic and integrable Andreev c
ductance line shapes, attempts to translate it into a quan
tive theory have not been successful. As was demonstrate
the previous section, a simple semiclassical theory for
chaotic case fails to recover the correct line shape. A sim
problem is encountered when one tries to do the analog
calculation for the integrable case—such a calculation p
dicts that the Andreev conductance should fall off quadr
cally with voltage, albeit at a faster rate than in the chao
case. This behavior is clearly at odds with our exact cal
lation showing a linear dependence on voltage. In ma
ways, the failure of a semiclassical approach is not surp
ing. It is known that semiclassical approximations are un
liable in superconducting systems, as the usual diagonal
proximation is worse than for normal systems.5,7

Finally, we note that there is a striking connection b
tween the Andreev conductance’s sensitivity to the nature
the dot’s classical dynamics and weak localization. It h
been shown both theoretically30 and experimentally31 that the
magnetic field dependence of the weak localization corr
tion of a quantum dot with two normal leads is very differe
for chaotic versus integrable dots. In the chaotic case,
finds a smooth Lorentzian field dependence, while in
integrable case a much sharper profile is found, with a c
at zero magnetic field. The similarity between the Andre
conductance effect and that in weak localization is not co
cidental; both effects rely on the interference of tim
reversed paths.

Despite this strong similarity, it is worth noting that th
effect in the Andreev conductance is much more p
nounced. Here, the difference between the chaotic and i
grable line shapes is more severe than in the weak loca
tion effect ~i.e., the chaotic case is much flatter than
Lorentzian!. The magnitude of the effect is also much larg
in the Andreev case; the signature of chaos versus inte
bility is the entire conductanceitself, not a quantum correc
tion like weak localization. For this reason, the effect in t
Andreev conductance should be observable in a sin
sample, whereas an ensemble average is required in the
localization case.

IV. REENTRANCE EFFECTS

We shift focus in this section, and examine so-called
entrance phenomena in the Andreev conductance of a ch
quantum dot. These effects are loosely defined by nonmo
tonic behavior of the conductance in either voltage or m
netic field. They are well known in the case of diffusive N
systems,13,14where the word ‘‘reentrant’’ is used because t
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Andreev conductance is the same as the normal conduct
at zero voltage and magnetic field, and at high voltage
field, but not for intermediate values. The theory develop
here allows us to address this behavior using a scatte
approach, whereas previous approaches almost exclus
made use of the quasiclassical Green function technique
what follows, we discuss the cases of ballistic contacts (TN
5TS51) and tunnel contacts (TN ,TS!1) separately.
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A. Ballistic contacts

In the absence of tunnel junctions, the equations de
mining the conductance simplify considerably. We find

gdir~«!52NN tan2S u~«!

2 D , ~4.1!
gdiff~«!5
NN

2

2 UcosS u~«!

2 D U24 NNutan@u~«!/2#u21NSucos@u~«!#/$11sin@u~«!#%u2

L~«!22V~«!2
. ~4.2!
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As discussed in the previous section, these two contr
tions to the Andreev conductance can be interpreted as
resenting two distinct physical consequences of the prox
ity effect. The direct termgdir represents processes in whic
the dot mimics a bulk superconductor, with Andreev refle
tions effectively occurring locally at the N-dot interface.
decreases monotonicallywith voltage and magnetic field
going to zero at large voltages or magnetic fields. This
flects the fact that the induced superconductivity effect
sensitive to the averagedamplitudefor Andreev reflection,
which is largest atV5B50. On the other hand, the diffusio
term gdiff increasesmonotonically withV andB, tending to
the classical result for two conductances in series:

gdiff→gclass5
~2NS!~NN!

2NS1NN
. ~4.3!

It represents a contribution from Andreev quasiparticles
the dot, and is thus sensitive to the dot’s density of states
the present case of ballistic contacts, the density of st
does not have any BCS-type peak and thus the diffusion t
rises steadily with appliedV or B.

Given that the direct and diffusion contributions react
opposite fashions to an increase inV or B, it is not surprising
that a nonmonotonicV or B dependence of the total condu
tance can be found if the relative strengths of these two te
are varied. The latter can be achieved by tuning the ratio
NN /NS . If NN!NS , the direct term will be dominant a
V,B50, and we expect a monotonic decrease ofG as a
magnetic field or finite bias are applied. In the opposite lim
NN@NS , the diffusion term dominates atV,B50, andG is
expected to increase withV or B. A nonmonotonicV or B
dependence can thus be anticipated in the intermediate
gime whereNN andNS are comparable.

To quantify the competition between the direct and dif
sion contributions, we examine these terms atV5B50. This
is done by solving the self-energy equations~2.15a!–~2.17c!
to determineu(«), and then substituting this into Eqs.~4.1!
and ~4.2!. Letting Nsum5ANN

2 16NNNS1NS
2, we obtain

gdir5~Nsum2NS2NN!
Nsum

NN
22NS , ~4.4a!
u-
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gdiff5~Nsum2NS23NN!
NS

NN
1

4NNNS

Nsum
, ~4.4b!

with the total conductance given by12

g5gdir1gdiff5~NS1NN!S 12
NN1NS

Nsum
D . ~4.5!

Plotted in Fig. 7 as a function ofNN /NS are the zero field
values of gdir , gdiff , and g, normalized by the high field
conductance given by the classical formula~4.3!. As NN /NS
is increased from zero, the total conductance initially d
creases withgdir as the local Andreev reflection effect
suppressed, while at larger values it starts to increase
gdiff as the density of states atEF returns to its normal state
value. At NN. 1

2 NS , we find that the total conductance
zero field is the same as the classical result. Not surprisin
we find that reentrance effects in both magnetic field a
voltage are maximized here~see Fig. 8!.

It is instructive to make a comparison at this point to t
nonmonotonic reentrance behavior of diffusive NS syste
~i.e., a diffusive normal metal in good contact with a sup
conductor!. In the diffusive case, the zero field and high fie
conductances are the same, being equal to the normal

FIG. 7. Plot of the direct and diffusion contributions to theV
50,B50 conductance as a function ofNN /NS for transparent point
contacts (TN5TS51). At NN.NN/2, the totalV50,B50 conduc-
tance is the same as the classical resultgclass.



ct
ion
b
y.
o

s-
en

ifi
y

th
ro
rs
is

a
in
th
a

io

to
t

on

ish-
e

re

is
ct
ffi-
is
jec-
ad-
en

ts of
ing
ges

n to

ter-
e-

at

ctor

at

p
t

;

10 234 PRB 62A. A. CLERK, P. W. BROUWER, AND V. AMBEGAOKAR
conductance. The lack of any change due to supercondu
ity at V5B50 is usually explained as an exact cancellat
of the conductance doubling effect of Andreev reflection
a suppression of the density of states at the Fermi energ
conductance enhancement is, however, found at finite v
age, roughly ateV.ET5\D/L2, whereD is the diffusion
constant andL is the length of the normal metal. Quasicla
sical calculations find maximum conductance enhancem
on the order of 10% of the normal state conductance.13

In the present system, we can tune the relative sign
cance of the Andreev reflection enhancement and densit
states suppression terms by varyingNN /NS . We find that
nonmonotonic effects are maximized when we adjust
ratio to mimic the diffusive system, by insisting that the ze
field and high field conductances are the same; this occu
NN.1/2NS . The conductance maximum in voltage
smaller however, being on the order of 0.01gclass, and occurs
roughly ateV5ES5NSd/2p. This is the inverse of the time
needed to escape to the superconductor, and is thus the
log of ET in the diffusive system, which represents the
verse of the time needed for a particle to diffuse across
normal metal and reach the superconductor. Note also th
the normal lead is removed the size of the induced gapD̃ in
the dot density of states is;ES .

Finally, we also find pronounced nonmonotonic behav
in magnetic field for this range ofNN /NS , with the magni-
tude of the effect being larger than that in voltage~Fig. 8!.
The maximum conductance occurs roughly at a fluxFC
given by Eq.~3.7!, the same flux that would be required
close the gap in the density of states in the absence of
normal lead.

B. Tunnel regime

We turn now to the case where both point contacts c
tain opaque tunnel barriers (TS ,TN!1). In this regime, it is

FIG. 8. Plot of the excess conductance@g(B,V)2gclass#/gclassas
a function ofB at V50, showing nonmonotonic behavior. From to
to bottom, curves are forNN /NS50.39,0.45,0.54,0.68. The inse
shows the excess conductance atB50 as a function of voltage
from top to bottom, curves are forNN /NS50.49,0.51,0.57,0.6. In
general, reentrance effects are maximized atNN /NS.0.54, where
the V50,B50 conductance is the same as at largeV or B.
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sufficient to consider the conductance to lowest nonvan
ing order in TN and TS . Of particular interest here is th
well-known ‘‘reflectionless tunneling’’ effect27—the V
50,B50 Andreev conductance of a N-I-N-I-S structu
~where I is an insulating region having transmissionT) is
found to be proportional toT, not to T2 as one has for a
single barrier. It is as though the Andreev reflected hole
not reflected at all by the tunnel barriers. A similar effe
occurs for a N-I-S system where the normal region is su
ciently disordered. The origin of this striking behavior
now understood to be the constructive interference of tra
tories that reflect many times between the two barriers, le
ing to a fraction;T of the conductance channels being op
~i.e., having a transmission probability close to unity!.32

In the present case, we are able to examine the effec
finite voltage and magnetic field on reflectionless tunnel
when a quantum dot separates the barriers. At large volta
or magnetic fields, the pairing angleu(«) tends to its normal
state value of 0, and we find that the conductance is give
leading order by the classical series addition formula

gclass5

S 1

2
NSTS

2D ~NNTN!

1

2
NSTS

21NNTN

. ~4.6!

For NSTS
2!NNTN , this simplifies togclass5

1
2 NSTS

2 . Unlike
the case atV50,B50, there is no orderT reflectionless tun-
neling contribution here, as the necessary constructive in
ference is lost when electron-hole degeneracy or tim
reversal symmetry is broken. Below we show th
reflectionless tunneling does survive at small values ofB and
V, and describe how this contribution evolves asB andV are
increased.

We begin by solving Eqs.~2.17a!–~2.17c! for the self-
energy to lowest order inTN ,TS for B50; we find the pair-
ing angle is given simply by

u~«!5arctanS ES

EN2 i« D . ~4.7!

ES andEN are the inverse escape times to the supercondu
and normal metal leads, respectively, and are defined by

EN5
NNTNd

2p
, ES5

NSTSd

2p
. ~4.8!

Using this result foru(«), we next write Eqs.~2.23a! and
~2.23b! for the conductance to lowest order inTS ,TN . The
direct contributiongdir corresponds to Andreev reflection
the N-dot interface and is of orderTN

2 . The only orderT
contribution is found in the diffusion termgdiff , which yields

gdiff~«!5NNTN

ENES
2

Ẽ2~«!
A 2

Ẽ2~«!1EN
2 1ES

22«2
1O~T2!,

~4.9!

where we have defined

Ẽ~«!5@~ES
22EN

2 2«2!214~ESEN!2#1/4. ~4.10!
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Equation~4.9! gives the complete voltage dependence
the reflectionless tunneling effect. AtV50, it reduces to

gdiff~0!5
~NNTN!2~NSTS!2

@~NNTN!21~NSTS!2#3/2
, ~4.11!

which is similar to the formula found in Ref. 32, generaliz
to the case where the point contacts have different wid
Depending on the relative magnitudes ofES and EN , the
conductance drops monotonically with voltage, or show
maximum aroundeV.ES ~see Fig. 9!. The location of the
maximum is ateV5A7/6ES if ES@EN . Similar behavior is
found for the magnetic field dependence of the conducta
~see the inset of Fig. 9!.

It is easy to understand the origin of this nonmonoto
behavior within our theory. WhenNS becomes larger than
NN , the effect of the superconductor on the dot density
states becomes significant. As we have seen in Sec. II,
induced density of states will have a sharp peak atES when
TS!1; it is this peak that is manifesting itself in the condu
tance.

It is interesting to note that Eq.~4.9! has the same form a
was found for a diffusive N-I-N-I-S system using a qua
classical Green’s function approach.33 In that system, the
quantum dot is replaced by a diffusive normal wire of leng
d, width W, and mean free pathl, and the normal and supe
conducting leads are not attached via point contacts, but
also wires of the same width. In the limitTN ,TS! l /d the
resistances of the tunnel barriers dominate, and an expres
identical to Eq. ~4.9! is obtained, but now the energie
EN ,ES are given by

EN5TN

\vF

4d
, ES5TS

\vF

4d
, ~4.12!

where vF is the Fermi velocity in the normal interbarrie
region. This is identical to the definition ofEN andES in Eq.
~4.8! if one takesd to be the level spacing in the wire. Not
that this correspondence is not surprising; previous stu

FIG. 9. Conductance vs voltage in the tunnel regimeTN5TS

50.01, exhibiting the enhancement of reflectionless tunneling
finite voltage. The parameterq is defined as the ratioNN /NS . The
inset shows theV50 conductance as a function of magnetic fie
for the same parameter choices.
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have also found that adding strong tunnel barriers make
diffusive normal wire with many channels equivalent to
quantum dot.

V. CONCLUSIONS

We have studied the voltage~V! dependence of the An
dreev conductance of chaotic and integrable quantum d
we have also examined the magnetic field~B! dependence in
the chaotic case. In the regime where the contact to the
perconductor dominates, we find that the voltage depende
of the Andreev conductance is extremely sensitive to
nature of the dot’s classical dynamics—in the chaotic ca
the dot itself mimics a superconductor and the conducta
is initially flat in voltage, whereas in the integrable case t
conductance falls off linearly with voltage. This effect
large in that the entire conductance forms the signature
chaos vs integrability; also, it does not require any ensem
averaging to be done. Both these facts make it particula
amenable to experiments using semiconductor quantum d
where a good contact between dot and superconductor ca
achieved in samples having a fixed dot shape.34,35 These ex-
periments typically employ Nb for the superconducting co
tact, while the quantum dot is defined in a two-dimensio
electron gas residing in an InAs layer.

We have also studied nonmonotonic reentrance phen
ena in theV andB dependence of the Andreev conductan
of a chaotic dot. We find that such behavior is ubiquito
and is the result of two competing processes—Andreev
flection at the dot–normal-lead interface, which decrease
V or B increases, versus quasiparticles being injected into
dot, which increases withV andB.
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APPENDIX: CALCULATING THE ANDREEV
CONDUCTANCE FOR BÅ0

In this Appendix, we outline the method used for calc
lations at nonzero magnetic fieldB. Formally, the magnetic
field enters the model in a different fashion from a volta
difference. The latter is dealt with by the fact that the A
dreev scattering matrixS defined in Eq.~2.12! is an explicit
function of energy. The field dependence, however, does
appear directly in the expression forS, but rather only
emerges in the averaging procedure—as we use the Pan
Mehta distribution defined in Eq.~2.2!, the ensemble of ran
dom matrices is itself a function of field.

As in the calculation atB50, the first step in obtaining
the conductance is to calculate the averaged matrix Gr
function ^G& defined in Eq.~2.14a!. The diagrams used ar
the same as in theB50 case, but now use of the distributio
~2.2! leads to a different self-energyS in the Dyson
equation:

at
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S~«,g!51M ^ S See ~122g!Seh

~122g!She Shh
D

51M ^
l2

M S ^tr Gee& ~2g21!^tr Geh&

~2g21!^tr Ghe& ^tr Ghh&
D ,

~A1!

whereg is a function of magnetic field@see Eq.~2.3!#. The
additional factors of (122g) here reflect the fact that break
ing time-reversal symmetry suppresses off-diagonal su
conducting correlations. Solving the Dyson equation~2.14a!
to leading order in 1/M , we find that relations~2.15a! and
~2.15b! continue to hold, meaning that we may still param
etrize the self-energies in terms of a pairing angleu(«,g)
through Eq.~2.16a!. The equation determiningu(«,g) now
takes the form

tan@u~«,g!#5
NSQS22g sin~u!

NNQN2 ip«/2d
, ~A2!

whereQN andQS are functions ofu defined in Eqs.~2.17b!
and ~2.17c!. The 1/M corrections to the self-energy in th
presence of a magnetic field read
ak
r-

-

Seh
2 2See

2

l2
2152

1

M S NSQS@sin~u!1ZS#

1NNQN@cos~u!1ZN#

1 i
p«

2d
12g sin2~u! D . ~A3!

The next step in the calculation is to sum diagrams for
conductance. The necessary diagrams are the same as
retained in theB50 calculation~i.e., direct and diffusion
terms!, although their evaluation is different. The direct ter
is still given by Eq.~2.23a!, but withu(«,g) now determined
from Eq. ~A2!.

The diffusion term acquires a form different from E
~2.23b!, as factors of (122g) now appear in graphs wher
the particle-hole indices of upper and lower branches do
match. These factors lead to 1/M corrections both to the
matrix inverse that arises when summing the diffusion la
der, and to the matrix prefactors of the ladder. As discus
earlier, such corrections are important when calculating
conductance. The result is
gdiff58NN
2UQN

2

ZN
U2 ~12ZN

2 !2L̃usin~u!u21~PN1gPB!usin~u!u21PSucos~u!u2

L̃22Ṽ2
, ~A4!

where

PB~u!52„~11ZN!2$112 Re@sin2~u!#%14ZN~11ZN!Re@cos~u!#14ZN
2 $ucos~u!u222 Re@sin2~u!#%…, ~A5!

L̃~u,g!5L~u!212gsin2~u!, ~A6!

Ṽ~u,g!5V~u!14g$12ucos~u!u214 Re@sin2~u!#%L̃~u,g!18gS NNUQN

ZN
U2

YN~u!1NSUQS

ZS
U2

YS~u!1gY2~u! D , ~A7!

YN~u!5S UZN

QN
U2

21D $12ucos~u!u214 Re@sin2~u!#%22ZN$5 Re@sin2~u!#Re@cos~u!#1Im@sin2~u!#Im@cos~u!#%

1ZN
2 $12ucos~u!u222 Re@sin2~u!#@112ucos~u!u2#%, ~A8!

YS~u!5S UZN

QN
U2

2u12ZSsin~u!u2D $12ucos~u!u214 Re@sin2~u!#%2ZS
2usin~u!cos~u!u2, ~A9!

Y2~u!512ucos~u!u2$114 Re@sin~u!2#%1Re@3 sin2~u!14 sin4~u!#14usin~u!u4. ~A10!

HereL(u), V(u), PN(u), andPS(u) are given by Eqs.~2.22a!–~2.22d!. The above equations, together with Eq.~A2! for
u(«,g), determine the Andreev conductance for arbitrary voltage and magnetic field.
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