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We review the quantum theory of cooling of a mechanical oscillator subject to the
radiation pressure force due to light circulating inside a driven optical cavity.
Such optomechanical setups have been used recently in a series of experiments by
various groups to cool mechanical oscillators (such as cantilevers) by factors
reaching 105, and they may soon go to the ground state of mechanical motion.
We emphasize the importance of the sideband-resolved regime for ground state
cooling, where the cavity ring-down rate is smaller than the mechanical
frequency. Moreover, we illustrate the strong coupling regime, where the cooling
rate exceeds the cavity ring-down rate and where the driven cavity resonance and
the mechanical oscillation hybridize.
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1. Introduction

The interaction of light with matter has been at the heart of the development of quantum
mechanics since its inception. As for the mechanical effects of light, these become most
pronounced in a setup where the light intensity is resonantly enhanced (i.e. an optical
cavity) and where photons transfer maximum momentum to a mechanical object, e.g. by
being reflected multiple times from a movable mirror attached to a cantilever. The study
of radiation pressure effects on a movable mirror was pioneered in seminal papers
by Braginsky and co-workers [1,2]. Strong changes of the mechanical properties of the
mirror were observed later in an experiment by the Walther group [3], where
a macroscopic mirror was found to exhibit two stable equilibrium positions under the
action of the cavity’s radiation field. The most recent series of activities in this field started
with experiments observing optomechanical cooling first using feedback [4,5] and later
[6–12] using the intrinsic effect discussed in the following, i.e. ‘passive’ cooling, without
active feedback, using purely the radiation pressure backaction. In addition, we note the
self-induced optomechanical oscillations [13] that have been observed in radiation-pressure
driven microtoroidal optical resonators [14,15] and other setups [16,17]. For a recent
review see [18]. The study of these systems has been made even more fruitful by the
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realization that the same (or essentially similar) physics may be observed in systems

ranging from driven LC circuits coupled to cantilevers [19] over superconducting single

electron transistors and microwave cavities coupled to nanobeams [20–26] to clouds

of cold atoms in an optical lattice, whose oscillations couple to the light field [27,28].

Cooling to the ground-state may open the door to various quantum effects in these

systems, including ‘cat’ states [29], entanglement [30,31], quantum nonlinear dynamics [32],

and Fock state detection [12]. Therefore, optomechanical ground-state cooling is currently

probably the highest priority in the field.
All the intrinsic optomechanical cooling experiments are based on the fact that

the radiation field introduces extra damping for the cantilever. In such a classical picture,

the extra damping reduces the effective temperature of the single mechanical mode

of interest, while leaving the bulk temperature of the cantilever the same (in the absence

of appreciable light absorption). The resulting effective temperature is related to the bath

temperature T by Teff/T¼GM/(GoptþGM), where GM and Gopt are the intrinsic mechanical

damping rate and the optomechanical cooling rate, respectively. Thus, there is no limit to

cooling in this regime, provided the laser power (and thus the cooling rate Gopt) can be

increased without any deleterious effects such as unwanted heating by absorption, and

provided the cooling rate remains sufficiently smaller than the mechanical frequency and

the cavity ring-down rate. However, at sufficiently low temperatures, the unavoidable

photon shot noise inside the cavity counteracts cooling. To study the resulting quantum

limits to cooling, a fully quantum-mechanical theory is called for, which we provided

in [33], based on the general quantum noise approach. Independently, a derivation

emphasizing the analogy to ion sideband cooling was developed in [34]. In the present

paper, we will review and illustrate our theory. We start by outlining the basic classical

picture, then present the quantum noise approach that provides a transparent and

straightforward way to derive cooling rates and quantum limits for the phonon number.

Finally, we illustrate the strong coupling regime that was first predicted in [33].

2. Basic classical picture

In this section, we briefly review the basic classical description of optomechanical cooling.

This was pioneered by Braginsky and co-workers in their work on optomechanical

damping [1,2], while the associated cooling effect was first demonstrated only rather

recently [7].
The main ingredient for optomechanical cooling is the appearance of extra damping,

ideally without extra fluctuations. This damping is introduced because the light-induced

force reacts with a finite delay time. In the case of radiation pressure, this comes about due

to the ring-down time ��1 of the cavity. On the other hand, bolometric (i.e. photothermal)

forces are produced when a bimorph cantilever absorbs some of the radiation circulating

inside the cavity. When bolometric forces dominate, it is the finite time of thermal

conductance that sets the time-lag between the impinging radiation intensity and the

resulting change in the cantilever temperature, which is proportional to the force.
The physical picture behind damping is simplest when the time-lag is small compared to the

oscillation period of the cantilever. Then both radiation pressure and bolometric forces give

rise to the same physics, modulo the appearance of a different time-scale in the two cases.

3330 F. Marquardt et al.
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To describe this physics, we first fix our coordinate system: increasing the displacement x of the
cantilever means elongating the cavity, and thus the optical resonance frequency (of the mode
of interest) decreases. Let us consider the cantilever being placed at some location to the left of
the resonance (Figure 1). This means that the optical mode frequency is still higher than the
frequency of the incoming laser radiation, which is therefore red-detuned with respect to the
optical resonance.Now imaginemoving the cantilever in a small cycle. As it moves towards the
resonance with a finite speed, the light-induced force does work on the cantilever. However,
due to the time-lag it remains smaller than it would be in the case of infinitely slow (adiabatic)
motion. Conversely, as the cantilevermoves back again in the second half of the cycle, the force
extracts energy and it is larger than for adiabatic motion. In total, the work done during such
a cycle by the light-induced force is negative, i.e. mechanical energy is extracted from the
cantilever (Figure 1(b)). This kind of physics may be modeled by writing down a simple
relaxation-type equation for the force, which tries to reach its proper x-dependent value F (x)
with some time-lag:

_FðtÞ ¼
FðxðtÞÞ � FðtÞ

�
: ð1Þ

The cantilever is a damped harmonic oscillator driven by the light-induced force:

m €x ¼ �m!2
Mðx� x0Þ �mGM _xþ F, ð2Þ

where x0 is the mechanical equilibrium position in the absence of radiation pressure, m is
the cantilever mass, !M is its mechnical frequency, and GM is the intrinsic damping rate.
Linearizing Equation (1) with respect to small displacements from the mechanical
equilibrium position �x (calculated in the presence of radiation pressure) and inserting it
into the equation of motion of the cantilever then yields the extra damping force.
In Fourier space, where x(t)¼

Ð
x[!]exp(�i!t)d!/2, we find the following linearized

equation of motion (at ! 6¼ 0):

�!2mx½!� ¼ �m!2
Mx½!� þ im!GMx½!� þ F 0ð �xÞx½!�=ð1� i!�Þ: ð3Þ

Comparing the last two terms (the intrinsic damping with the imaginary part of the
optomechanical term), we find that the optomechanical damping rate is given by

Gopt ¼
F0ð �xÞ

m!M

!M�

1þ ð!M�Þ
2
, ð4Þ

radiation
pressure
force

optical cavity

cantilever

laser

(a) (b) (c)

Figure 1. (a) The standard optomechanical setup treated in the text: a driven optical cavity with
a movable mirror. (b) Moving the mirror in a cycle can result in work extracted by the light-field, due
to the finite cavity ring-down rate. (c) Asymmetric quantum noise spectrum for the radiation
pressure force noise, according to Equation (14). (The color version of this figure is included in the
online version of the journal.)
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for the simple ansatz of Equation (1). According to this analysis, one would expect

the maximum effect to occur when !M�¼ 1, i.e. when the time-delay matches the period of

the cantilever motion. As we will see further below, this conclusion is not upheld by the full

quantum-mechanical analysis for the case of radiation pressure.
Equation (1) and the subsequent analysis holds exactly for the bolometric force. In

that case, � is the finite time of thermal conductance and F (x)¼FmaxI(x)/Imax

is the displacement-dependent bolometric force, where I(x)¼ Imax/(1þ (2D(x)/�)2) is the

intensity profile and D(x)¼ x!R/L is the position-dependent detuning between incoming

laser radiation and optical resonance at x¼ 0. For the radiation-pressure force, we can use

the present analysis only in the regime of ��!M, and only if we allow for a position

dependent relaxation rate 1/� (see [33]).
In both cases, however, the shape of Gopt as a function of cantilever position �x is

determined by the slope of the intensity profile, i.e. in particular by the sign of F0.

To the left of the resonance, where F04 0, we indeed obtain extra damping: Gopt4 0.

As long as there are no extra fluctuations introduced by the light-induced force (i.e. if

we may disregard shot noise), the effective temperature of the mechanical degree of

freedom is therefore reduced according to the ratio of intrinsic and optomechanical

damping rates:

Teff ¼ T
GM

GM þ Gopt
: ð5Þ

This can be obtained, for example, by solving the Langevin equation that includes the

thermal fluctuations of the mechanical heat bath (whose strength is set by GM

according to the fluctuation-dissipation theorem). Then the effective temperature may

be defined according to the equipartition theorem: m ~!2
Mhðx� �xÞ2i ¼ kBTeff where ~!M

contains the frequency renormalization due to the real part of the optomechanical term

in Equation (3).

3. Quantum noise approach

The quantum regime is reached once the simple classical relation for the effective

temperature, Equation (5), ceases to be valid. This happens when one has to take into

account the shot noise that tends to heat the cantilever motion. It enforces a lower bound

for the cantilever phonon number that can be reached by optomechanical cooling, i.e.

a finite quantum limit, which we are going to calculate. Crucially, we will also show that

a proper choice of parameters can make this bound on the phonon number become much

smaller than one, indicating that ground state cooling is possible.
The quantum picture can also be understood in terms of Raman scattering: incoming

photons, red-detuned with respect to the optical resonance, absorb a phonon from the

cantilever, thereby cooling it. However, there is also a finite probability for phonon

emission, and thus heating. The purpose of a quantum theory is to discuss the balance of

these effects.
The idea behind the quantum noise approach to quantum-dissipative systems is to

describe the environment fully by the correlator of the fluctuating force that couples to the

quantum system of interest. If the coupling is weak enough, knowledge of the correlator is

3332 F. Marquardt et al.
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sufficient to fully describe the influence of the environment. Essentially, the results of this

approach are based on leading-order perturbation theory, i.e. Fermi’s Golden Rule and

related expressions. It yields rates of second order in the coupling that can be used inside

standard master equations [35], to calculate the steady-state occupations and other

quantities of interest. In our case, this means looking at the spectrum of the radiation

pressure force fluctuations, which are produced by the shot noise of photons inside the

driven optical cavity mode, i.e. a nonequilibrium environment. In other applications,

we might be dealing with the electrical field fluctuations produced, e.g. by a driven

electronic circuit (superconducting single electron transistor, quantum point contact,

LC circuit) capacitively coupled to some nanobeam. The general formulas remain the same

for all of these cases, and only the noise spectrum changes.
The Fourier transform of the force correlator defines the spectral noise density:

SFFð!Þ ¼

ð
dt expði!tÞ F̂ðtÞF̂ð0Þ

D E
: ð6Þ

The noise spectrum SFF is real-valued and non-negative. However, in contrast to the

classical case, it is asymmetric in frequency, since F̂ðtÞ and F̂ð0Þ do not commute. This

asymmetry has an important physical meaning: contributions at positive frequencies

indicate the possibility of the environment to absorb energy, while those at negative

frequencies imply its ability to release energy (to the cantilever). All the optomechanical

effects can be described in terms of SFF, as long as the coupling is weak.
The optomechanical damping rate is given by the difference of noise spectra at positive

and negative frequencies,

Gopt ¼
x2ZPF
�h2
½SFFð!MÞ � SFFð�!MÞ�: ð7Þ

Here xZPF¼ [�h/(2m!M)]1/2 is the zero-point amplitude of mechanical motion. This formula

is obtained by applying Fermi’s Golden Rule to derive the transition rates arising from

the coupling of the cantilever to the light field, i.e. from the term Ĥint ¼ �F̂x̂ in the

Hamiltonian. These are

Gopt
# ¼

x2ZPF
�h2

SFFð!MÞ , Gopt
" ¼

x2ZPF
�h2

SFFð�!MÞ: ð8Þ

These rates enter the complete master equation for the density matrix �̂ of the cantilever in
the presence of the equilibrium heat bath (that would lead to a thermal population �nth) and

the radiation field:

_̂� ¼ ðGopt
# þ GMð �nth þ 1ÞÞD½â� þ ðGopt

" þ GM �nthÞD½â
y�

h i
�̂: ð9Þ

Here the equation has been written in the interaction picture (disregarding the oscillations

at ~!M), and

D½Â��̂ ¼
1

2
ð2Â�̂Ây � ÂyÂ�̂� �̂ÂyÂÞ ð10Þ

Journal of Modern Optics 3333
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is the standard Lindblad operator for downward (Â¼ â) or upward (Â¼ ây) transitions in

the oscillator. Restricting ourselves to the populations �nn, we obtain the equation for the

phonon number �n ¼ hn̂i ¼
P

n n�nn:

_�n ¼ GM �nth þ Gopt
" � ðGM þ GoptÞ �n, ð11Þ

which yields the steady-state phonon number in the presence of optomechanical

cooling:

�nM ¼
GM �nth þ Gopt �nOM

GM þ Gopt
: ð12Þ

This is the weighted average of the thermal and the optomechanical phonon numbers.

It represents the correct generalization of the classical formula for the effective

temperature, Equation (5). Here

�nOM ¼
Gopt
"

Gopt
¼

1

Gopt
# =G

opt
" � 1

¼
SFFð!MÞ

SFFð�!MÞ
� 1

� ��1
ð13Þ

is the minimal phonon number reachable by optomechanical cooling. This quantum limit

is reached when Gopt�GM. Then, the cooling effect due to extra damping is balanced by

the shot noise in the cavity, which leads to heating.
The radiation pressure force is proportional to the photon number: F̂ ¼ ð�h!R=LÞâ

yâ. A

brief calculation for the photon number correlator inside a driven cavity [33] yields its

spectrum in the form of a Lorentzian that is shifted by the detuning D¼!L�!R between

laser and optical resonance frequency !R:

SFFð!Þ ¼
�h!R

L

� �2
�np

�

ð!þ DÞ2 þ ð�=2Þ2
, ð14Þ

where �np is the photon number circulating inside the cavity. This asymmetric quantum

noise spectrum is illustrated in Figure 1(c), while a plot of the resulting steady-state

phonon number is shown in Figure 2(a).
Inserting this spectrum into Equations (7) and (13) yields the optomechanical cooling

rate and the minimum phonon number as a function of detuning D. The minimum of �nOM is

reached at a detuning D ¼ �½!2
M þ ð�=2Þ

2
�
1=2, and it is (see Figure 2(b)):

min �nOM ¼
1

2
1þ

�

2!M

� �2
" #1=2

�1

0
@

1
A: ð15Þ

For slow cantilevers, !M� �, we have min �nOM ¼ �=ð4!MÞ � 1. Ground-state cooling

becomes possible for high-frequency cantilevers (and/or high-finesse cavities), when

��!M. Then, we find

min �nOM �
�

4!M

� �2

: ð16Þ

3334 F. Marquardt et al.
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As explained in [34], these two regimes can be brought directly into correspondence with

the known regimes for laser-cooling of harmonically bound atoms, namely the Doppler

limit for !M� � and the resolved sideband regime for !M� �. In the resolved sideband

limit the Stokes and anti-Stokes lines reflected from the cantilever–cavity setup, which are

at !L � !M, can be resolved from the main line at !L. Only in this limit is ground state

cooling possible.

4. Strong coupling effects

Up to now, we have assumed that the coupling between light and mechanical degree of

freedom is sufficiently weak to allow for a solution in terms of a master equation,

employing the rates obtained from the quantum noise approach. However, as the coupling

becomes stronger (e.g. by increasing the laser input power), Gopt may reach the cavity

decay rate �. Then, the spectrum of force fluctuations is itself modified by the presence of

the cantilever. It becomes necessary to solve for the coupled dynamics of the light field and

the mechanical motion. This has been done in [33], by writing down the Heisenberg

equations of motion for the cantilever and the optical mode, and solving them after

linearization. Here we will only discuss the result.
To analyze these features, let us consider the spectrum of the cantilever motion,

Sccð!Þ ¼

ð
dt expði!tÞ ĉyðtÞĉð0Þ

� 	
, ð17Þ

where ĉ is the annihilation operator for the cantilever harmonic oscillator. At weak

coupling, this spectrum displays a peak at the (renormalized) cantilever frequency, i.e. at

! ¼ � ~!M (the minus sign is a consequence of our choice of the definition, following [33]).
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Figure 2. (a) Cantilever phonon number as a function of circulating radiation power inside the
cavity and as a function of detuning between laser and optical resonance. The mean phonon number
in steady state is plotted on a logarithmic scale. Contour lines indicate �n ¼ 1 and �n ¼ 0:1. For this
plot, the following parameters have been used: !M=� ¼ 0:3, �nth ¼ 103, Q ¼ !M=GM ¼ 106, and
(!R/!M)(xZPF/L)� 0.012. (b) The minimum phonon number as a function of the ratio between the
mechanical frequency !M and the optical cavity’s ring-down rate �, according to Equation (15).
Ground-state cooling is possible in the regime !M� �, i.e. the ‘good cavity’ or ‘resolved sideband’
limit. (The color version of this figure is included in the online version of the journal.)
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Its width (FWHM) is given by GoptþGM, and its total weight
Ð
Scc(!)d!/2 yields the

phonon number �n ¼ hĉyĉi . As the laser power is increased, the width increases and the
weight diminishes (in the cooling regime).

When Gopt/� is no longer much smaller than one, deviations from the weak-coupling
results start to appear [33]. The most dramatic effect is observed when Gopt/�4 1/2: the
peak splits into two (Figure 3). As it were, in this strong-coupling regime one actually
encounters the hybridization of two coupled harmonic oscillators, namely the cantilever
and the driven optical mode (with an effective frequency set by the detuning).
At resonance, i.e. for D¼�!M, the splitting is set by 2�, where the coupling frequency
� is determined by the circulating laser power, the ratio of mechanical zero-point
fluctuations to the cavity length, and by the optical resonance frequency:

� ¼ !R �n1=2p

xZPF
L

: ð18Þ

5. Outlook

During the past year, several new ideas have been introduced into the field
of optomechanical cooling. For example, placing a movable membrane in the middle of
a standard optical cavity [12] can lead to orders of magnitude better performance, as it
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Figure 3. The spectrum Scc(�!) of the cantilever motion, as a function of detuning D and spectral
frequency !, for fixed circulating power. For the plot shown here, the strong-coupling regime is
reached, i.e. Gopt/� becomes larger than one near resonance. Consequently, the driven cavity
resonance and the cantilever resonance hybridize, and an avoided crossing is observed.
The parameters for this plot are: �/!M¼ 0.1, GM/!M¼ 10�5, (!R/!M)(xZPF/L)¼ 0.01, �np ¼ 100,
and �nth ¼ 103, and the color scale indicates the values of !MScc(�!). (The color version of this figure
is included in the online version of the journal.)
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separates the mechanical from the optical elements. Such a setup has been used to cool

from 300K down to 7mK, and it may ultimately by employed for Fock state detection

of mechanical vibrations [12]. Even nanomechanical objects (such as nanowires) might be

placed inside the standing light wave [36] and cooled by scattering. Doppler cooling of

Bragg mirrors may provide another promising approach [37]. Recent experiments on

nanomechanical resonators coupled to on-chip microwave transmission line resonators

[26,38] and on trapped cold atoms interacting with a light field [28] point towards

promising new avenues in the field of optomechanics (see ‘News and Views’ [39]).

Furthermore, sideband-resolved cooling with !M/�� 20 has been demonstrated recently

[40], paving the way for ground-state cooling when combined with cryogenics [41].
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[7] Höhberger-Metzger, C.; Karrai, K. Nature 2004, 432, 1002–1005.

[8] Arcizet, O.; Cohadon, P.F.; Briant, T.; Pinard, M.; Heidmann, A. Nature 2006, 444, 71–74.
[9] Gigan, S.; Böhm, H.R.; Paternostro, M.; Blaser, F.; Langer, G.; Hertzberg, J.B.; Schwab, K.C;
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