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The emergence of a direction of time in statistical mechanics from an underlying
time-reversal-invariant dynamics is explained by examining a simple model. The manner in which
time-reversal symmetry is preserved and the role of initial conditions are emphasized. An extension
of the model to finite temperatures also is discussed. ©1999 American Association of Physics Teachers.
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I. INTRODUCTION

The second law of thermodynamics is usually stated as
inequalityDS>0 for an isolated system, whereS is the en-
tropy. Implicit in thermodynamics is thus a direction of tim
determined by the evolution toward equilibrium of a mac
scopic system with no external influences. The extent
which this notion emerges from statistical mechanics ba
on an underlying time-reversal-invariant dynamics is
topic of this paper.

The point of view taken here is not controversial; it h
been accepted since the work of Boltzmann1 was understood
Including the topic in this special issue may thus seem
necessary. However, our impression is that many un
graduate~and even many graduate! courses do not cover thi
thought-provoking topic adequately. The reason may be
the message can be lost in subtleties described by words
as Stosszahlansatz, Umkehreinwand, and Wiederkehrein-
wand, and by discussing the topic in the context of Bolt
mann’s equation, Liouville’s theorem, and coarse graini
An alternative is to discuss simple concrete models. We
consider one that is easy to simulate and has a long his
the 1907 double-urn model of Paul and Tatiana Ehrenfe2

Our treatment is based in part on Chapter 10 of Ref. 3.
The outline of the paper is as follows. After a brief gene

discussion, the way in which a direction of time follows fro
the statistics of large numbers is illustrated using the Ehr
fest model~in its dog–flea version!. The difference between
time symmetric fluctuations and the time evolution of a m
roscopically identifiable nonequilibrium initial condition i
emphasized. Calculations are done for a single system
for an ensemble of systems, the latter being described
Markovian equation. With the passage of time~no pun in-
tended!, the model has become more topical than its conce
ers could have imagined. Here it is used to describe the
proach to equilibrium of two-level quantum systems such
spins. Temperature is introduced into the model via aME-
TROPOLISalgorithm, and the approach to equilibrium at co
stant temperature is discussed, including a populat
inversion ~negative temperature! initial condition. To our
knowledge, the Ehrenfest model has not been used in
way, especially as regards the introduction of temperatu

II. BACKGROUND

From the point of view of thermal physics, the state of
isolated physical system with many degrees of freedom
specified by its energy and other macroscopic parame
such as volume and magnetization. The assumption of m
degrees of freedom implies a dense spectrum of excitati
and thus a very large number of microscopic states in a s
1068 Am. J. Phys.67 ~12!, December 1999
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energy interval consistent with the given macroscopic
rameters. The starting point of a statistical analysis of a m
chanical system is the enumeration~allowed in principle by
both quantum and classical mechanics! of these microscopic
states. The fundamental postulate of equilibrium statist
mechanics is that each of them is equally probable in eq
librium; the logarithm of their number is the entropy asso
ated with the thermodynamic equilibrium of the isolated s
tem.

We are interested in how equilibrium is reached. A re
sonable, but incorrect, expectation is that if the microsco
states are not equally likely at some instant, the evolut
will be toward a situation in which they are. If the number
microstates explored by the system increased with time
logarithm or entropy would also increase, giving a statisti
underpinning to the rule that an increase of entropy cha
terizes spontaneous processes in isolated systems.

The trouble with this too simple idea is that not every o
of the microscopic configurations consistent with a giv
macroscopic nonequilibrium state tends, under the action
the laws of mechanics, toward equilibrium, although most
them do. As a result the strict inequality in the second l
has to be replaced by a statement of overwhelming lik
hood in statistical mechanics, thereby allowing the latter
be consistent with the time-symmetric equations of moti
A tiny loophole now opens, with the consequence that th
is no longer a strict logical connection between the direct
of time and the increase of entropy: One can never rule
the overwhelmingly unlikely possibility that a low entrop
initial condition is a time-symmetric giant fluctuation caug
midway. To close the loophole, we have to make the
tremely reasonable hypothesis that macroscopic deviat
from equilibrium are due to externally imposed initial co
ditions.

The word ‘‘overwhelming’’ is not being used lightly. To
illustrate its meaning, consider the ratio of the number
microscopic configurations for a gas filling all or 99.99%
a container. If we treat theN molecules of the gas as ver
weakly interacting, an estimate for this ratio is 0.99992N,
because each molecule has 0.01% fewer available state
the smaller volume. For a liter,N is order 1022, so that the
logarithm of the ratio is 1018. The reciprocal of the ratio is
thus very small indeed. Yet, this unimaginably tiny numb
is the probability that a gas in equilibrium in the entire co
tainer would be found to be occupying 99.99% of its volum
and thus to have undergone a small but macroscopic entr
reducing spontaneous fluctuation.

III. THE DOG –FLEA MODEL

Treating the evolution of a reasonably realistic statisti
system is technically difficult. Even for a weakly interactin
1068© 1999 American Association of Physics Teachers
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gas, collisions cannot be ignored, because they are
mechanism that shuffles a particular molecule between
states of motion. The approach to equilibrium thus depe
on the details of the motion, and is a less general phen
enon than equilibrium itself. In order not to lose the woo
for the trees, it is useful to look for simple but illustrativ
examples. One such example is a collection of ‘‘two-leve
systems, that is, systems described by two possible
comes.

As a physical realization of this model, one could consid
a collection of weakly interacting quantum spin1

2 systems
each of which has up and down states. A more whims
illustration is based on the model proposed in Ref. 2: C
sider a system consisting of a subsystem of 50 fleas wh
‘‘states’’ are residence on dog A or dog B, which we sh
call Anik and Burnside, sleeping side by side. To simul
molecular agitation, we suppose that the fleas jump back
forth between the dogs. Now we need something that p
the role of the rest of the system. Let us suppose that the
are each equipped with a number, and have been traine
jump when their number is called. The ‘‘environment’’ ag
tating the fleas, which is like a heat reservoir, will be som
thing that calls out numbers at random, and our closed
tem will be the fleas and the reservoir.

To simulate the approach to equilibrium, it is necessary
start from a configuration that almost never occurs in
maximally random state of affairs. Suppose that in the
ginning Anik has no fleas at all. We agitate the fleas
having a computer generate random numbers between 1
50 and transferring the flea with this number from one dog
the other. At every step we record the total number~between
0 and 50! of fleas on Anik, but not their labels. This way ha
the practical advantage that we do not have to keep trac
the 250 ways of assigning 50 labeled fleas to the two dogs
also means that we are following only the ‘‘macrostate.’’

A typical sequence is shown in Figs. 1 and 2. In the fi
step it is certain that the number called will belong to a fl
on Burnside. In the second step the probability of this h
pening again is 49/50. Thus, there initially seems to b
steady march toward an equal partition of the fleas betw
the dogs. The early time development is shown in Fig.

Fig. 1. Early time development of the number of fleas on Anik due
random jumps. The horizontal lines indicate two standard deviations ab
and below the mean.
1069 Am. J. Phys., Vol. 67, No. 12, December 1999
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After about 100 steps we reach a situation where sometim
Anik and sometimes Burnside has more fleas. In this regio
we would expect that every one of the 250 configurations
mentioned above would be equally likely. This expectation
translates into a binomial distribution corresponding to th
repeatable random event of tossing 50 fair coins, namely

P~m!5
1

250S 50
m D , ~1!

whereP(m) is the probability of the macrostate withm fleas
on Anik, and (m

50) is the combinatorial coefficient.
An examination of Fig. 2 confirms this expectation. The

horizontal lines have been drawn to include two standar
deviations on either side of the mean, which correspond
approximately to the 95% range for the distribution Eq.~1!.
~The standard deviation isA50/2'3.5.! Our eye tells us that,
except for the initial transient, fluctuations outside this rang
are indeed rare.

We can be more quantitative. Figure 3 is a histogram o
the relative durations of the possible outcomes, constructe
from Fig. 2 with the first 100 steps omitted. Superimpose
on the histogram is the binomial distribution. The agreemen
is very good.4 The dance of the fleas in Fig. 2 has thus very
quickly forgotten its unusual starting point and become th
endless jitterbug of ‘‘equilibrium,’’ in which an event as un-
likely as a flea-less dog simply never happens again witho
outside intervention.

Figure 2 also illustrates the role of motion reversal. The
model is time-reversal invariant because a string of rando
numbers in reverse order is just as random. After the first 10
or so steps, the evolution has no sense of time. If we were
expand the region near one of the reasonably large fluctu
tions away from the mean, we would find that there is no
characteristic feature of the buildup preceding the maximum
deviation to distinguish it from the time reverse of the deca
following the maximum. There is also no conclusive argu
ment to rule out the possibility that the start of the trace
shown in Fig. 1 has captured a truly giant fluctuation mid
way. Of course, we know that the figure was not produced i
this way.

ve
Fig. 2. Long time behavior of fleas on Anik showing fluctuations in equi-
librium. The horizontal lines indicate two standard deviations above an
below the mean.
1069V. Ambegaokar and A. A. Clerk
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The point of the previous paragraph is worth reempha
ing. The time asymmetry expressed in the second law isnot
simply the consequence of applying time-symmetric mic
scopic dynamics to systems having many degrees of f
dom. Time-reversal symmetry is indeed preserved in our s
tem. If at some instant the system is in a highly improba
state~that is, no fleas on Anik!, it is overwhelmingly likely
that it will be in a more evenly distributed state at some la
time. However,if the improbable state were due to a gia
fluctuation, precisely the same argument could be made
garding the prior history of the system—it would then
overwhelmingly likely that at earlier times the system w
also in a more evenly distributed state. In this sense, the
perfect symmetry between past and future.

The notion of a statistical ‘‘arrow of time’’ thus depend
on the added ingredient of imposed initial conditions. Wh
we see a system in a highly unlikely state, we justifiab
assume that this state is the result of a prepared starting
dition, and not of an overwhelmingly improbable fluctuatio
from equilibrium. As has been particularly emphasized
Peierls,5 this setting of initial conditions at some specifie
time breaks the symmetry between past and future.

In fact it is virtually impossible to wait long enough fo
the initial configuration in Figs. 1 and 2 to occur as a flu
tuation in equilibrium, where it has a probability of 2250. To
have a reasonable chance of witnessing such a fluctua
we would have to allow a number of time steps appro
mately equal to the reciprocal of this probability—abo
1015—to elapse. Thus, to recover the unlikely configurati
of a totally clean Anik by random shuffling of fleas betwe
equally dirty dogs, even for thisvery small system of 50
fleas, we would need a plot roughly two hundred thousa
million times as long as Fig. 2, which extends for only 50
time steps. Because Fig. 2 is about 5 cm wide, the lengt
the required trace would be about 10 mil km. In comparis
the distance to the moon is only about 400 000 km. The
of large numbers is at work, here making an unlikely ev
overwhelmingly unlikely. Though not logically certain, it i
roughly 99.999 999 999 999 999% probable that the time
Fig. 1 is running in the direction of increasing disorder.

Ehrenfests’ dogs bring into focus the essential charac
istics of time in statistical mechanics.~i! A starting point

Fig. 3. Histogram generated from Fig. 2 with the first 100 time steps om
ted.
1070 Am. J. Phys., Vol. 67, No. 12, December 1999
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macroscopically distinct from equilibrium is overwhelming
likely to evolve to greater disorder, that is, toward equili
rium. ~ii ! In equilibrium, fluctuations have no sense of tim
~iii ! Giant fluctuations from equilibrium to extremely un
likely states are extremely rare.~iv! A statistically deter-
mined direction of time follows from the assumption that
system in a highly unlikely ordered state has been so p
pared by external influences. Even for the rather small s
tem we considered, these uses of the words ‘‘overwhe
ingly’’ and ‘‘extremely’’ are very conservative.

The word entropy has not appeared in this section. A
matter of fact, there is more than one way to introduce t
notion here, as will be seen in more detail in Sec. IV. T
essential point can be made by noting that the states win
fleas on Anik are ‘‘macrostates,’’ each allowing for (n

50) as-
signments of distinct fleas or ‘‘microstates.’’ We could sim
ply call the logarithm of the latter number, the entropy, th
is, S(n)5 ln(n

50). The combinatorial coefficients have a max
mum half way, atn525, and become smaller in either d
rection. In Fig. 4, the values ofn plotted in Fig. 2 have been
converted to a plot of entropy versus time steps using
rule. As in Fig. 2,S starts from zero, becauseS(0)5 ln(0

50)
5 ln 150, and has fluctuations.

This entropy, sometimes called the Boltzmann entro
can be associated with asingle time trace such as in Fig. 2
Although it fluctuates in equilibrium, the fluctuations dimin
ish as the size of the system increases. In a sufficiently la
system the Boltzmann entropy increases steadily as equ
rium is approached.

Note that we have ignored any contribution to the entro
of the closed system from the reservoir which is respons
for the hopping of the fleas. This assumption is justified h
because energy has not entered into our considerations,
ing the model slightly artificial. It is probably best to think o
the reservoir as having a very high temperature~in energy
units! compared to the characteristic energies of the s
system. As a result, heat exchanges with the subsystem o
with no change in the entropy of the reservoir, and only
flea entropy changes with time. The introduction of ener
and temperature in Sec. V will lead to an interesting diffe
ence.

t-Fig. 4. The Boltzmann entropy associated with Fig. 2, showing fluctuati
in equilibrium.
1070V. Ambegaokar and A. A. Clerk
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IV. GIBBS ENTROPY

The dog–flea model is simple enough to allow the solut
of several other interesting problems in time-dependent
tistical mechanics. We first reexamine the assignment of
tropy to our subsystem of fleas. The usual expression for
entropy in statistical mechanics is

S52(
i

Pi ln Pi , ~2!

where the sum is over microstates labeled by the indexi and
Pi is the probability ofi . This entropy is associated with
distribution describing an ensemble of systems, whereas
Boltzmann entropy introduced earlier is defined for the m
roscopic time development of a single system. If there areM
equally likely microstates, each of thePi s would equal 1/M ,
and Eq. ~2! reduces to lnM. The Boltzmann entropy ha
exactly this form if the macrostate withn fleas has (n

50)
equally likely microstates. As we saw, the equilibrium Bo
zmann entropy fluctuates for the subsystem plus reservo

It is possible to assign a constant entropy to equilibrium
system of 50 two-level systems at a temperature much hig
than the level spacing is commonly assigned an entrop
50 ln 2534.657. Expression~2! gives this result if each o
the 250 microstates is taken to be equally probable. As
saw from Fig. 3, the fluctuations in Figs. 1 and 2 are
expression of equal likelihood of all these microstates.

Even when the probabilitiesP(m) of the macrostates cor
responding tom fleas on Anik are not given by Eq.~1!, the
probabilities of the equally likely (m

50) microstatesi (m) as-
sociated withm are

Pi (m)5P~m!Y S 50
m D . ~3!

If we substitute Eq.~3! into Eq. ~2! and do the sum ove
i (m), we obtain

S52 (
m50

50

P~m!ln P~m!1 (
m50

50

P~m!lnS 50
m D . ~4!

The second term on the right-hand side of Eq.~4! arises, as
was just shown, from the fact that a macrostate havingm
fleas on Anik has an additional contribution to the entro
coming from the equally likely microstates which make
the macrostate. If expression~1! is substituted into Eq.~4!,
the result is the previously mentioned 50 ln 2. We shall c
this new entropy the Gibbs entropy, because it is analog
to the entropy in Gibbs’s canonical ensemble.

To associate a Gibbs entropy with the early, and con
quently nonequilibrium, part of the time development w
have been discussing, we need more information than
single time trace we have been discussing. Because this
tropy is a property of a distribution, we need to assign pr
abilities to every time step of the process, which means
we have to contemplate an ensemble of subsystems an
fine probabilities in terms of occurrences in the ensem
One way to proceed would be to create a very large num
of traces such as the one in Fig. 1, all of them starting w
the same configuration. Because the sequence of ran
numbers would be different in each run, these traces wo
1071 Am. J. Phys., Vol. 67, No. 12, December 1999
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differ from one another. At any given time, we could calc
late a histogram like Fig. 3.

Obtaining reliable distributions by this method would r
quire a very large number of runs. Fortunately, there i
much simpler way of implementing the idea, which does n
require a random number generator. Let us calculate a di
bution functionP(m), with m running from 0 to 50, which
changes from step to step, and reflects the random transf
fleas from dog to dog. At the start of the process we kn
with certainty that there are no fleas on Anik. In the langua
of probability, the distribution att50 is P0(0)51,P0(1)
5P0(2)5¯5P0(50)50. ~To indicate the time we need
another label, which we shall write as a subscript.! Now we
argue that the probability distribution at timet determines
the probability distribution at timet11. The assumption tha
the fleas are being called at random implies that

Pt11~m!5
m11

50
Pt~m11!1

502~m21!

50
Pt~m21!.

~5!

Equation~5! can be understood by saying it in words. An
can havem fleas at timet11 eitherbecause she hadm11 at
time t and one jumped off, which has a probability propo
tional tom11, or because she hadm21 and one jumped on
which has a probability proportional to the 502(m21)
5512m fleas that were on Burnside at timet.

We can write a program to develop the distribution cor
sponding to the initial certainty forward in time using E
~5!. However, there is one artificiality in this time evolution
At odd ~even! times only odd~even! numbers of fleas can b
on Anik. This artificiality can be remedied by averaging E
~5! over two forward steps. The resulting evolution is show
in Fig. 5.

The three-dimensional plot in Fig. 5 is obtained by stac
ing together the distributions at successive times. It v
clearly shows the initial certainty evolving to
distribution—which, not surprisingly, can be shown to be t
binomial in Eq.~1!—with the outer regions in the range o
possibilities being extremely unlikely. At each step we c
calculate an entropy using Eq.~4!. The result, shown in Fig.
6, shows that the entropy rises steadily from zero to 50 l

Fig. 5. The probabilities of fleas on Anik with the passage of time.
1071V. Ambegaokar and A. A. Clerk
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By imagining that the system can be restarted at will,
have, as in Sec. III, insisted on the possibility of the exter
imposition of an initial condition that is overwhelmingly un
likely in equilibrium. Time-symmetric dynamics applied t
such an initial condition is overwhelmingly likely to evolv
toward equilibrium.5 If it were possible to repeatedly arrang
for such a state to be a final condition, we could use
backwards-in-time evolution equation relating the distrib
tion function at timet21 to the distribution function at time
t. This equation would be identical to Eq.~5!, except for the
replacement oft11 by t21:

Pt21~m!5
m11

50
Pt~m11!1

512m

50
Pt~m21!. ~6!

Equation~6! would predict the opposite of what is show
in Fig. 5—as one moved back in time through the history
the system, the entropy would increase monotonically.
such repeated occurrences of low entropy states as fluc
tions in equilibrium are unimaginable. Such states do
typically arise in this fashion, nor can we arrange for them
do so. Time asymmetry in this context thus origina
through our use of Eq.~5! and rejection of Eq.~6!.5

V. ENERGY AND TEMPERATURE

Up to now, the word temperature has only appeared at
end of Sec. III where it was argued that the standard Eh
fest model describes equilibration at high temperature.
have confirmed this argument by showing that the entr
evolves to the situation in which all microscopic configur
tions are equally likely. It is, however, not difficult to intro
duce temperature in this context. Suppose that Anik
cleaner than Burnside, providing a less friendly environm
for fleas. We may model this environment by assuming
energy coste to be paid by a flea jumping from Burnside
Anik. Let the fleas be at an effective temperatureT ~in en-
ergy units!, and defineD5e/T. We argue that Eq.~5! should
be changed to

Fig. 6. Entropy of Anik’s fleas computed by averaging over many trials,
the time-dependent probabilities generated via Eq.~5!.
1072 Am. J. Phys., Vol. 67, No. 12, December 1999
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Pt11~m!5
m11

50
Pt~m11!1

502m

50
@12e2D#Pt~m!

1
502~m21!

50
e2DPt~m21!. ~7!

For the new conditions, we expect that in equilibrium a
particular flea will spend more time on~dirty! Burnside than
on ~clean! Anik. This expectation is implemented in Eq.~7!,
which implies that when the number of one of the fleas
Anik is called, it jumps to Burnside with probability unity
~term 1!, but if one of the fleas on Burnside is called, it eith
stays put with probability 12e2D ~term 2!, or jumps with
probability e2D ~term 3!.

Making the jump-probability from Burnside to Anik
smaller than the reverse process by the factore2D does in
fact achieve equilibrium in the steady state. In equilibrium,
temperatureT, the probabilityp of a flea being on Anik, and
the probability 12p of one being on Burnside should b
given by the Gibbs distribution

p5
e2D

11e2D , 12p5
1

11e2D . ~8!

For 50 fleas the equilibrium probability distribution shou
be the binomial corresponding to 50 tosses of an unfair c
with outcome probabilitiesp and 12p:

Peq~m!5S 50
m D pm~12p!502m. ~9!

It can be verified that Eqs.~8! and ~9! are a stationary solu
tion of Eq.~7!, namely that substituting this form on the righ
reproduces it on the left. In short, the effective temperat
of the fleas determines how many are willing to put up w
Anik’s cleanliness. In the high temperature limit,D!1, Eq.
~5! is recovered. At very low temperatures,D@1 and few
fleas leave the snug comfort of Burnside.

Several interesting and informative computations can
performed with the evolution equation—Eq.~7!. We will
focus on one which we find particularly illuminating. Show
in Fig. 7 are three entropy versus time traces, each at a
ferent temperature but with the same initial condition of

Fig. 7. Evolution of the Gibbs entropy for various temperatures, star
from a state where all fleas are on the ‘‘clean’’ dog Anik.
1072V. Ambegaokar and A. A. Clerk
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50 fleas on the ‘‘clean’’~energetically unfavorable! dog
Anik. The curves have been generated by computing
Gibbs entropy~4! at successive time steps. We observe t
at low temperatures, the entropy of the system does no
crease monotonically in time—after a certain critical time
actually starts todecrease. Have we managed to violate th
second law?

A little thought shows that there is no violation. The se
ond law requires only that thetotal entropy of the dog–flea
system plus reservoir increase with time. The entropy of
reservoir is insensitive to changes in the configuration of
fleas only at temperatures much greater than the energy
e. In general, changes in entropy and energy of the reser
at temperatureT are related by

dSres5
dUres

T
52

dU

T
, ~10!

where the last equality is the result of conservation of
ergy, andU is e times the number of fleas on Anik.~Note
that the energy transfer is at at fixede, which implies that no
work is done.3,6! Using Eq. ~10!, an increase of the tota
entropy translates as usual into a decrease of the Helmh
free energyF of the flea subsystem, defined byF5U
2TS, whereT is the temperature of the reservoir andS is
the entropy defined in Eq.~4!. In Fig. 8, we plot the time
evolution of the free energy for the same initial conditio
and temperatures used in Fig. 7. We see that in all cases
free energy decreases monotonically with time.

Note that the initial condition for Figs. 7 and 8~all fleas on
Anik! corresponds to having a negative temperature for
dog–flea system. Consequently, reducing the internal en
~moving fleas from Anik to Burnside! initially increases the
entropy above its equilibrium low temperature value.

Fig. 8. Evolution of the free energyF ~in units of e! for various tempera-
tures, starting from a state where all fleas are on the ‘‘clean’’ dog Anik
1073 Am. J. Phys., Vol. 67, No. 12, December 1999
e
t

n-
t

-

e
e
ost
ir

-

ltz

the

e
gy

VI. CONCLUSION

We have demonstrated that an understanding of time
statistical mechanics can be obtained by carefully examin
the simple Ehrenfest dog–flea model. The model has
virtues of offering qualitative insights and yielding easily
quantitative analysis. Our study has emphasized the ma
in which time-reversal invariance is maintained in the mod
and the role of initial conditions in establishing a direction
time. We have also shown that the model can be extende
finite temperatures, where it may be used to explore inter
ing issues.

Finally, we list some suggestions for further reading. E
cellent elementary discussions are to be found in Ref. 7.
subject is also treated in many textbooks accessible to
vanced undergraduates.8 Whereas the topic is often unde
played in courses on thermal physics, the opposite may
true in specialized books. Several thought-provoking artic
as well as discussions of the deep implications of the id
presented here are to be found in Ref. 9.

Note added in proof. Our colleague Ben Widom remark
that there are ‘‘purists’’—among whom he does not inclu
himself—who think that the Ehrenfest model is not a fir
principles explanation of irreversibility because there is
‘‘stochastic element’’ in the model, which makes it ‘‘no
deterministic, as real dynamics is...’’ To any such puri
among our readers, we point out that our implementation
the model uses computer generated pseudo-random num
which are completely deterministic.~See Chapter 11 of Ref
3 for an elementary introduction to deterministic chaos.!
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