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Introduction

These notes summarize lectures given at the 2015 Les Houches School on Optome-
chanics. The first part of the notes give a quick review of the basic theory of quantum
optomechanical systems, based largely on linearized Heisenberg-Langevin equations.
The notes then focus on selected topics relating to quantum measurement and quan-
tum optomechanics. Chapter 3 gives comprehensive discussion of the quantum limit
on the added noise of a continuous position detector, following the quantum linear re-
sponse approach. While much of this discussion can already be found in (Clerk, 2004;
Clerk et al., 2010), I provide a greater discussion here of the role of noise correlations,
and how these can be achieved in an optomechanical cavity (by using squeezed input
light, or by modifying the choice of measured output quadrature). Chapter 4 turns
to a discussion of back-action evading measurements of a mechanical quadrature, dis-
cussing how this can be achieved in a two-tone driven cavity system. I also provide
a quick introduction to the theory of conditional continuous quantum measurement,
and use it to discuss how a back-action evading measurement can be used to produce
conditional mechanical squeezed states.
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Basic quantum cavity optomechanics
theory

This chapter will present a “quick and dirty” introduction to the basic theoretical
language used to describe quantum optomechanical systems. More complete introduc-
tions to some of the topics covered here can be found in (Clerk et al., 2010; Aspelmeyer
et al., 2014; Clerk and Marquardt, 2014)

2.1 Optomechanical Hamiltonian

We start by considering a standard optomechanical system, consisting of a single mode
of a resonant electromagnetic cavity whose frequency ωcav depends on the position x
of a mechanical resonator. Both the mechanical mode and cavity mode are harmonic
oscillators, and the Hamiltonian takes the form (~ = 1):

ĤOM = ωcav[x̂]â†â+ ωM b̂
†b̂ (2.1)

where â is the annihilation operator for the cavity mode, b̂ is the annihilation operator
for the mechanical mode. Finally, as we are typically interested in small mechanical
displacements, we can Taylor expand the dependence of ωcav on x keeping just the first
term. Writing the mechanical position in terms of creation and destruction operators,
the optomechanical Hamiltonian takes the form:

ĤOM = ωcavâ
†â+ ωM b̂

†b̂+ gâ†â
(
b̂+ b̂†

)
≡ Ĥ0 + Ĥint (2.2)

where

g =
dωcav

dx
xZPF =

dωcav

dx

√
~

2mωM
. (2.3)

It is worth noting a few basic features of this Hamiltonian:

• The position x of the mechanical resonator sets the cavity frequency; thus, if you
drive the cavity with a monochromatic laser, the average cavity photon number
〈â†â〉 will also depend on the mechanical position.

• Anything that multiplies x̂ in a Hamiltonian acts as a force on the mechanical
resonator. Hence, the cavity photon number n̂ = â†â is a force on the mechanical
resonator (i.e. the radiation pressure force).

• Without loss of generality, we have defined the optomechanical interaction with
a plus sign in this chapter. Hence, a positive displacement x > 0 of the mechanics
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results in an increased cavity frequency. We also use g to denote the single-photon
optomechanical coupling strength in this chapter (the same quantity which is
denoted g0 in other works, e.g. (Aspelmeyer et al., 2014)).

A rigorous derivation of this Hamiltonian (for the specific case of a Fabry-Perot
resonator with a moveable end mirror) was given in (Law, 1995). This derivation keeps
all the resonant modes of the optical cavity, and shows how in principle one also ob-
tains interaction terms where the mechanical resonator can mediate scattering between
different optical modes, and also terms corresponding to the dynamical Casamir effect,
where, e.g. , destruction of a phonon can result in the creation of a pair of photons.
Such additional terms are of negligible importance in the standard situation where the
mechanical frequency ωM is much smaller than all optical frequency scales.

Returning to the basic Hamiltonian ĤOM above, one sees immediately that the
cavity photon number n̂ commutes with Ĥ and is thus a conserved quantity. Thus,
in the absence of any driving or coupling to dissipation, ĤOM can easily be exactly
diagonalized. For a fixed photon number, the optomechanical interaction corresponds
to a static force on the mechanics, which simply shifts its equilibrium position an
amount ∆xn = −2(g/ωM )xZPF. The eigenstates are just tensor products of states
of fixed photon number with displaced harmonic oscillator eigenstates. This is conve-
niently described by making a polaron transformation, i.e. a n̂-dependent displacement
transformation of the mechanical resonator:

Û = exp (−ip̂∆xn) = exp

(
g

ωM
n̂
(
b̂− b̂†

))
(2.4)

The transformed Hamiltonian takes the form:

Û†ĤOMÛ =

(
ωcav −

g2

ωM

)
â†â+ ωM b̂

†b̂− g2

ωm
â†â†ââ (2.5)

In this new frame, we see explicitly from the last term that the eigenenergies of the
Hamiltonian have a nonlinear dependence on photon number: the mechanical res-
onator mediates an optical Kerr-type nonlinearity (or equivalently, photon-photon
interaction). In the simplest picture, we simply combine the two features noted above:
as ωcav depends on x, and x depends on n̂ (as it is a force), the cavity frequency will
depend on n̂. This yields the n̂2 term above. In a more quantum picture, note that
to leading order, the interaction Ĥint creates or destroys a mechanical excitation (a
phonon) with a matrix element proportional to n̂. While such a process would not
conserve energy, to second order we could have an energy conserving process that in-
volves a virtual state with a mechanical excitation. The amplitude of such a process
would be proportional to n̂2 and inversely proportional to ωM (i.e. the energy cost of
the virtual state). This is yet another way to understand the last term in Eq. (2.5).

2.2 Dissipation and noise

Next, we need to include the coupling of both the cavity and the mechanical resonator
to their respective dissipative environments, as well any driving terms (e.g. a coherent
laser drive of the cavity). We follows the standard input-output theory route to treat
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these effects (see, e.g. (Walls and Milburn, 2008; Clerk et al., 2010)), where the cavity
mode (mechanical mode) acquires an energy damping rate κ (γ). To obtain these
effects, one needs to include terms in the Hamiltonian describing the dissipative baths
and their coupling to the system:

Ĥ = ĤOM + Ĥκ + Ĥγ (2.6)

Consider first the cavity dissipation, described by Ĥκ. This just describes a linear cou-
pling between the cavity mode and extra-cavity photon modes, which are themselves
just free bosons (lowering operators b̂q):

Ĥκ =
∑
q

ωq b̂
†
q b̂q − i

√
κ

2πρ

∑
q

(
â†b̂q − h.c.

)
(2.7)

As is standard, we approximate the the bath density of states to be a frequency-
independent constant (which is typically an excellent approximation, as we are only
interested in a small range of bath frequencies centred around the cavity frequency
ωcav): ∑

q

δ(ω − ωq) = ρ (2.8)

As described in, e.g. (Clerk et al., 2010), one can now derive the effective Heisenberg-
Langevin equation of motion for the cavity field. This involves first solving the Heisen-
berg equation of motion for the bath operators b̂q, and then substituting these into the
Heisenberg equation of motion for the cavity mode lowering operator â. One obtains:

d

dt
â = −i

[
â, ĤOM

]
− κ

2
â−√κâin (2.9)

The second term on the RHS describes the a simple linear damping of the cavity
(resulting from photons leaking from the cavity to the bath), while the third term
describes a driving of the cavity mode by noise emanating from the bath. Note that
âin has been normalized so that â†inâin represents a photon number flux (i.e. âin has

units of 1/
√

time).
Taking the bath to be in a thermal equilibrium state, one finds that the operator-

valued input noise âin(t) is Gaussian (i.e. fully characterized by two-point correlation
functions). Further, for the typically small frequency scales of interest, it can also be
approximated as being white noise. One obtains:〈

âin(t)â†in(t′)
〉

= δ(t− t′) (1 + n̄c
th) (2.10)〈

â†in(t)âin(t′)
〉

= δ(t− t′)n̄c
th (2.11)

Here, n̄cav
th is a Bose-Einstein occupancy factor evaluated at the cavity frequency and

at the bath temperature. Note that the input noise satisfies the canonical commutation
relation [

âin(t), â†in(t′)
]

= δ(t− t′) (2.12)
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One can treat the effects of mechanical dissipation in a completely analogous manner.
The Heisenberg-Langevin equation of motion for the mechanical lowering operator
takes the form

d

dt
b̂ = −i

[
b̂, ĤOM

]
− γ

2
b̂−√κb̂in (2.13)

The mechanical input noise has correlation functions analogous to those in Eqs. (2.10),(2.11),
except that n̄cav

th is replaced by n̄M
th, a Bose-Einstein factor evaluated at the mechanical

frequency and mechanical bath temperature.
Finally, we note that the approximations we have made in treating the bath

(i.e. taking it to have a constant density of states, and taking its noise correlation
functions to be delta-correlated) correspond to treating it as a Markovian bath (a van-
ishing correlation time, absence of memory effects). The resulting Heisenberg-Langevin
equations are completely local in time.

2.3 Driving and output field

To include a coherent driving of the cavity (e.g. by a laser), we simply allow the input
field âin to have an average value āin(t). One can easily confirm that this is completely
equivalent to having added an explicit linear driving term

Ĥdrive = −i
(
āin(t)â† − h.c.

)
(2.14)

to the Hamiltonian. In many cases, the cavity bath corresponds to modes in the waveg-
uide (or transmission line) used to drive and measure the cavity. In this case, we are
also interested in knowing what the field emitted by the cavity into the waveguide
is. The amplitude of this outgoing field is described by the operator âout(t). In the
simple Markovian limit we are focusing on, this field is completely determined by the
input-output relation:

âout(t) = âin(t) +
√
κâ(t) (2.15)

where the intra-cavity field â is determined by the Heisenberg-Langevin equation
Eq. (2.9). Note that â(t) is driven by the input field âin(t), and hence the two terms on
the RHS here are not independent. When κ = 0 (i.e. no coupling between the waveg-
udie and the cavity), the input-output equation just describes a perfect reflection of
waves off the end of the waveguide. For non-zero κ, the first term describes incident
waves that are immediately reflected from the cavity-waveguide boundary, whereas
the second term describes wave emitted from the waveguide.

Consider the simple case where we have a monochromatic coherent driving of
the cavity: āin(t) = αine

−iωLt. It is convenient to work in a rotating frame where
this driving looks time-independent. This is achieved by using the unitary Û(t) =
exp

(
iωLâ

†ât
)

to transform to a new frame. In this new frame, the Hamiltonian is
given by 1:

1One also needs in principle to shift the frequency of the bath oscillators b̂q to make sure that in
the new frame, the cavity-bath coupling remains time-independent. While this is normally innocuous,
it does imply the presence of negative-frequency bath modes in the new frame. The implications of
this for a driven optomechanical system are discussed in detail in (Lemonde and Clerk, 2015).
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Ĥ ′ = Û(t)ĤÛ†(t) + i

(
d

dt
Û(t)

)
Û†(t) (2.16)

and the Heisenberg Langevin equation takes the form:

d

dt
â = −i

[
â,−∆â†â+ ωM b̂

†b̂+ Ĥint

]
− κ

2
â−√καin −

√
κâin (2.17)

where the drive detuning ∆ ≡ ωL − ωcav, and we have explicitly separated out the
average value of âin. Note that the RHS has no explicit time dependence.

In the case where there is no optomechanical coupling, one can easily solve the
above equation for the stationary value of â; one finds:

〈â〉 = −
√
καin

κ
2 − i∆

≡ α (2.18)

It thus follows from Eq. (2.15) that the average output field is given by:

〈âout〉 = −
κ
2 + i∆
κ
2 − i∆

αin ≡ eiθαin (2.19)

We thus recover the expected expression for the reflection phase θ.

2.4 Displacement transformation

Let’s now include the optomechanical interaction in Eq. (2.17). We expect again that
the cavity drive will induce an average value for the cavity field â, and will also induce
an average value for the mechanical lowering operator b̂ (as the average photon number
of the cavity is a static force on the mechanical resonator, which will displace its
equilibrium position). It is useful to make displacement transformations to separate out
these classical mean values from the additional dynamics that arises due to the noise
operator âin and b̂in (operators which encode both classical and quantum noise driving

the system). We thus introduce displaced cavity and mechanical lowering operators d̂

and b̂new defined via:
â = ācl + d̂ b̂ = b̄cl + b̂new (2.20)

where ācl, b̄cl are the classical average values for the cavity and mechanical mode op-
erators. These are found by solving the classical, noise-free version of the Heisenberg-
Langevin equations Eq. (2.9) and (2.13) (i.e. one replaces â → ācl, b̂ → b̄cl in the
equations and drops all noise terms). These classical equations are nonlinear, and
regimes exist where multiple classical solutions can be found (the well-known optome-
chanical bistability, see Sec. V.A of (Aspelmeyer et al., 2014) for a discussion). We
assume however that we work in a regime where there is a unique solution to the
classical equations. As d̂ and b̂new encode all quantum effects in our system, it is com-
mon to refer to them as the quantum parts of the cavity and mechanical annihilation
operators. We stress that they are standard canonical bosonic annihilation operators.

Once the classical amplitudes have been found, one returns to the full Heisenberg-
Langevin equations, expressed now in terms of the operators d̂ and b̂new. One finds that
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there are no purely constant terms on the RHS of these equations (i.e. linear driving
terms). In particular, the coherent cavity drive αin enters only through the classical
displacements ācl, b̄cl. The resulting equations are equivalent to having started with a
coherent Hamiltonian

ĤOM = −∆′d̂†d̂+ ωM b̂
†
newb̂new + Ĥint (2.21)

Ĥint = g
(
ā∗cld̂+ ācld̂

† + d̂†d̂
)(

b̂†new + b̂new

)
(2.22)

where the modified detuning ∆′ = ∆− g(b̄cl + b̄∗cl). We see than in this new displaced
frame, the mechanical mode only interacts with the fluctuating parts of the cavity
photon number n̂ (i.e. terms involving d̂, d̂†). Note that the static, “classical” part of

the photon number |ācl|2 determines the classical mechanical displacement b̂cl, but
does not appear explicitly in ĤOM. In what follows, we drop the subscript ”new” on
b̂new to keep things clear, and also replace ∆′ by ∆.

2.5 Linearized regime of optomechanics

By strongly driving the cavity (large αin), ācl increases in magnitude. This in turn
increases the fluctuations in the intracavity photon number, namely the term that is
linear in the d̂ operators. Correspondingly (as per Eq. (2.22)), the large drive enhances
the quadratic terms in the optomechanical interaction Hamiltonian. It is thus com-
mon to introduce a drive enhanced many-photon optomechanical interaction strength,
defined as 2

G ≡ g |ācl| = g
√
n̄cav (2.23)

In almost all current experiments, the single photon strength g is too weak to directly
play a role (i.e. g � κ, ωM ), and appreciable optomechanical effects are only obtained
when the cavity is strongly driven and G made large. In this regime where G � g,
it a good approximation to only retain the drive-enhanced terms in Eq. (2.22). The
physics is then described by the approximate quadratic Hamiltonian:

Ĥlin = −∆d̂†d̂+ ωM b̂
†b̂+G(b̂+ b̂†)(d̂+ d̂†) (2.24)

with corresponding Heisenberg-Langevin equations:

d

dt
d̂ = (i∆− κ/2)d̂− iG

(
b̂+ b̂†

)
−√κd̂in (2.25)

d

dt
b̂ = (−iωM − γ/2)b̂− iG

(
d̂+ d̂†

)
−√γb̂in (2.26)

Note that we have made a gauge transformation on the cavity field to absorb the
phase of the classical cavity field ācl. In this regime, the equations of motion for the
cavity and mechanical lowering operators are purely linear, and thus it is often termed

2It is also common notation to use g0 (instead of g) to denote the single-photon optomechanical
coupling strength, and use g (instead of G) to denote the many-photon coupling strength. We prefer
the notation used here, both as it avoids having to use yet another subscript, and because the use of
a capital letter more dramatically emphasizes the coupling enhancement by the drive.



8 Basic quantum cavity optomechanics theory

the linearized regime of optomechanics. The physics is just that of a system of two
linearly coupled harmonic oscillators, albeit one with a great deal of tunability, and
one where the dissipative rates and effective temperatures of the two oscillators can
be very different. The effective frequency of the photonic oscillator can be tuned by
changing the frequency of the cavity drive, and the strength of the interaction G can
be tuned by changing the amplitude of the cavity drive.

To get a feel for the various interesting things that can be done with linearized
optomechanics, we quickly sketch different interesting possibilities below.

2.5.1 Beam-splitter Hamiltonian

Consider Eq. (2.27) in the regime where ∆ = −ωM , implying that the cavity drive
frequency is detuned to the red of the cavity resonance an amount exactly equal to the
mechanical frequency (a so-called red-sideband drive). The two effective oscillators in
Eq. (2.27) are then resonant. If we further assume that ωM � κ and that G � ωM ,
the interaction terms that create or destroy a photon-phonon pair are sufficiently non-
resonant to not play a large role in the dynamics. We can thus make a rotating wave
approximation, keeping only the energy conserving interaction terms. The Hamiltonian
then takes the simple form:

Ĥlin = −∆d̂†d̂+ ωM b̂
†b̂+G(b̂†d̂+ d̂†b̂) (2.27)

This interaction converts photons to phonons and vice-versa, and is known as a beam-
splitter Hamiltonian or “swap” Hamiltonian. It is at the heart of quantum state-
transfer applications of optomechanics (see, e.g., (Hill et al., 2012; Dong et al., 2012;
Andrews et al., 2014)). It also is at the heart of optimal cavity-cooling schemes, where
one uses the driven cavity to cool a thermal mechanical resonator to close to the ground
state (Marquardt et al., 2007; Wilson-Rae et al., 2007). The above swap-Hamiltonian
can be used to transfer mechanical excitations to the cavity mode, where they are
quickly emitted (at a rate κ) to the cavity bath.

2.5.2 Entangling Hamiltonian

Consider Eq. (2.27) for the opposite detuning choice, where ∆ = ωM : the cavity drive
frequency is now detuned to the blue of the cavity resonance an amount ωM . If we again
assume that the good-cavity condition ωM � κ is fulfilled and that G� ωM , we can
again make a rotating-wave approximation where we only retain energy conserving
terms. As now the cavity photons have an effective negative frequency, the energy
conserving terms correspond to creating or destroying pairs of excitations, and the
Hamiltonian becomes:

Ĥlin = −ωM d̂†d̂+ ωM b̂
†b̂+G(b̂†d̂† + d̂b̂) (2.28)

The dynamics of this Hamiltonian creates photons and phonons in pairs, and leads
to states with a high degree of correlations between the mechanics and light (i.e. the
photon number and phonon number are almost perfectly correlated). Such states are
known as “two-mode squeezed states”, and their correlations correspond to quantum
entanglement. Such optomechanical entanglement has recently been measured. The
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above Hamiltonian also corresponds to the Hamiltonian of a non-degenerate paramet-
ric amplifier. It can be used for near quantum-limited amplification. It also can exhibit
dynamical instabilities for sufficiently large values of G.



3

Quantum limit on continuous
position detection

One of the key motivations for studying optomechanics is the possibility to use light
to measure mechanical motion with a precision limited by the fundamental constraints
imposed by quantum mechanics. In some cases, one can even devise schemes that tran-
scend the quantum constraints that limit more conventional measurement strategies.
In this chapter, we will review the most general and rigorous formulation of the quan-
tum limit on continuous position detection for a generic linear-response detector. The
general derivation will make the origin of this quantum limit clear, as well establish a
set of requirements which must be met to achieve it. We will then apply this general
formalism to the basic optomechanical cavity as introduced in the previous chapter.
The presentation here is closely related to that developed in (Clerk, 2004) and (Clerk
et al., 2010). In contrast to those works, we provide a discussion of how squeezing can
be used to generate the noise correlations needed to reach the quantum limit in the
free mass limit.

3.1 General problem: minimizing total detector added noise

To motivate things, let’s return to Eq. (2.19) for the reflection phase shift for a driven
single-sided cavity, and give a classical discussion of how our cavity could function as
a position detector. For a fixed cavity drive frequency, the reflection phase shift θ is
a function of the cavity frequency ωcav. With the optomechanical coupling, the in-
stantaneous cavity frequency becomes a function of the mechanical position. Consider
first the simple case where x is fixed to some unknown position x0. The mechanical
displacement shifts the cavity frequency by an amount gx0/xZPF. For small displace-
ments, the change in phase will be linear in x0. In the optimal case where ∆ = 0, we
have

θ = π +
4g

κ

x0

xZPF
≡ θ0 + ∆θ (3.1)

(with θ0 = π) and the output field from the cavity will have the form

aout = ei(θ0+∆θ)ain ' eiθ0 (1 + i∆θ) ain = − (1 + i∆θ) ain (3.2)

where ain is the amplitude of the incident cavity driving field. Information on the
mechanical displacement x0 is encoded in the change in reflection phase ∆θ, and
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will thus be optimally contained in the phase quadrature of the output field. Taking
(without loss of generality) ain to be real, this quadrature is defined as:

Xφ(t) = −i (aout(t)− a∗out(t)) (3.3)

Using the standard technique of homodyne interferometry, this output-field quadrature
can be directly converted into a photocurrent I(t) ∝ Xφ (see e.g. (Walls and Milburn,
2008; Clerk et al., 2010)). This photocurrent will have intrinsic fluctuations (due to
shot noise in the light), and hence will have the form:

I(t) = λx0 + δI0(t) (3.4)

The first term is the “signal” associated with the measurement, where λ ∝ g param-
eterizes the response of the photocurrent to changes in position. The second term
represents the imprecision noise in the measurement, i.e. the intrinsic fluctuations in
the photocurrent. At each instant t, δI0(t) is a random variable with zero mean. To
determine x0, one would need to integrate I(t) over some finite time interval to resolve
the signal above these intrinsic fluctuations. It is common to scale these intrinsic out-
put fluctuations by the response coefficient λ, and think of this noise as an equivalent
mechanical position noise δximp(t) ≡ δI0(t)λ.

If the mechanical resonator is now in motion, and ωM is sufficiently small (i.e. much
smaller than κ), then the cavity will be able to adiabatically follow the mechanical
motion. Eq. (3.4) will then still hold, with the replacement x0 → x0(t). Our goal here
will not be to be measure the instantaneous position of the mechanical resonator: we
consider the standard situation where the mechanical resonator is in motion (oscillat-
ing!), and the optomechanical coupling is far too weak to measure position in a time
short compared to the mechanical period. Instead, our goal will be to determine the
quadrature amplitudes describing the oscillating motion, i.e. the amplitudes of the sine
and cosine components of the motion:

x(t) = X(t) cos(Ωt) + Y (t) sin(Ωt). (3.5)

These amplitudes typically evolve on a time scale much longer than the mechanical
period.

One might think that in principle, one could increase the signal-to-noise ratio
indefinitely by increasing λ (e.g. by increasing g or the power associated with the cavity
drive). From a quantum point of view, we know the situation cannot be that simple, as
the quadrature amplitudes X and Y become non-commuting, conjugate observables,
and cannot be known simultaneously with arbitrary precision. More concretely, in the
quantum case, we absolutely need to think about an additional kind of measurement
noise: the disturbance of the mechanical position by the detector, otherwise known as
back-action. Returning to the optomechanical Hamiltonian of Eq. (2.2), we see that
fluctuations of cavity photon number act like a noisy force on the mechanical resonator.
This will give rise to extra fluctuations in its position, δxBA(t). Eq. (3.4) thus needs
to be updated to have the form:

I(t) = λ [x0(t) + δxBA(t)] + δI0(t) ≡ λ [x0(t) + δxadd(t)] (3.6)

We have introduced here the total added noise of the measurement δxadd(t) = δxBA(t)+
δI0(t)/λ.
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The goal is now to make this total added noise as small as possible, and to under-
stand if there are any fundamental limits to its size. Simply increasing the coupling
strength or optical power no longer is a good strategy: in this limit, the second “impre-
cision” noise term in δxadd(t) will become negligible, but the first back-action term will
be huge. Similarly, in the opposite limit where the coupling (or optical drive power) is
extremely weak, back-action noise will be negligible, but the imprecision noise noise
will be huge. Clearly, some trade-off between these two limits will be optimal. Further,
one needs to consider whether these two kinds of noises (imprecision and back-action)
can be correlated, and whether this is desirable.

Our goal in what follows will be to first review how one characterizes the magnitude
of noise via a spectral density, and then to establish the rigorous quantum limit on
how small one can make the added noise δxadd(t).

3.2 Quantum noise spectral densities: some essential features

In this section, we give a compact (and no doubt highly incomplete) review of some
basic properties of quantum noise spectral densities. We start however with the simpler
case of spectral densities describing classical noise.

3.2.1 Classical noise basics

Consider a classical random signal I(t). The signal is characterized by zero mean
〈I(t)〉 = 0, and autocorrelation function

GII(t, t
′) = 〈I(t)I(t′)〉. (3.7)

The autocorrelation function is analogous to a covariance matrix: for t = t′, it tells
us the variance of the fluctuations of I(t), where as for t 6= t′, it tells us if and how
fluctuations of I(t) are correlated with those at I(t′). Some crucial concepts regarding
noise are:

• Stationary noise. The statistical properties of the fluctuations are time-translation
invariant, and hence GII(t, t

′) = GII(t− t′).
• Gaussian fluctuations. The noise is fully characterized by its autocorrelation func-

tion; there are no higher-order cumulants.

• Correlation time. This time-scale τc governs the decay of GII(t): I(t) and I(t′)
are uncorrelated (i.e. GII(t− t′)→ 0) when |t− t′| � τc.

For stationary noise, it is often most useful to think about the fluctuations in the
frequency domain. In the same way that I(t) is a Gaussian random variable with zero
mean, so is its Fourier transform, which we define as:

IT [ω] =
1√
T

∫ +T/2

−T/2
dt eiωtI(t), (3.8)

where T is the sampling time. In the limit T � τc the integral is a sum of a large
number N ≈ T

τc
of random uncorrelated terms. We can think of the value of the integral

as the end point of a random walk in the complex plane which starts at the origin.
Because the distance traveled will scale with

√
T , our choice of normalization makes
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the statistical properties of I[ω] independent of the sampling time T (for sufficiently
large T ). Notice that IT [ω] has the peculiar units of [I]

√
secs which is usually denoted

[I]/
√

Hz.
The spectral density of the noise (or power spectrum) SII [ω] answers the question

“how big is the noise at frequency ω?”. It is simply the variance of IT (ω) in the
large-time limit:

SII [ω] ≡ lim
T→∞

〈|IT [ω]|2〉 = lim
T→∞

〈IT [ω]IT [−ω]〉. (3.9)

A reasonably straightforward manipulation (known as the Wiener-Khinchin theorem)
tells us that the spectral density is equal to the Fourier transform of the autocorrelation
function

SII [ω] =

∫ +∞

−∞
dt eiωtGII(t). (3.10)

We stress that Eq. (3.9) provides a simple intuitive understanding of what a spectral
density represents, whereas in theoretical calculations, one almost always starts with
the expression in Eq. (3.10). We also stress that since the autocorrelation function
GII(t) is real, SII [ω] = SII [−ω]. This is of course in keeping with Eq. (3.8), which
tells us that negative and positive frequency components of the noise are related by
complex conjugation, and hence necessarily have the same magnitude.

3.2.2 Definition of quantum noise spectral densities

In formulating quantum noise, one turns from a noisy classical signal I(t) to a Heisenberg-
picture Hermitian operator Î(t). Similar to our noisy classical signal, one needs to
think about measurements of Î(t) statistically. One can thus introduce a quantum-
noise spectral density which completely mimics the classical definition, e.g.:

Sxx[ω] =

∫ +∞

−∞
dt eiωt〈x̂(t)x̂(0)〉. (3.11)

We have simply inserted the quantum autocorrelation function in the classical defi-
nition. The expectation value is the quantum statistical average with respect to the
noisy system’s density matrix; we assume that this is time-independent, which then
also gives us an autocorrelation function which is time-translational invariant.

What makes quantum noise so quantum? There are at least three answers to this
question:

• Zero-point motion. While a classical system at zero-temperature has no noise,
quantum mechanically there are still fluctuations, i.e. Sxx[ω] need not be zero.

• Frequency asymmetry. Quantum mechanically, x̂(t) and x̂(t′) need not commute
when t 6= t′. As a result the autocorrelation function 〈x̂(t)x̂(t′)〉 can be complex,
and Sxx[ω] need not equal Sxx[−ω]. This of course can never happen for a classical
noise spectral density.

• Heisenberg constraints. For any system that can act as a detector or amplifier,
there are fundamental quantum constraints that bound its noise. These con-
straints have their origin in the uncertainty principle, and have no classical coun-
terpart.
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3.2.3 Noise asymmetry and fluctuation dissipation theorem

The asymmetry in frequency of quantum noise spectral densities is a topic that is
discussed in great detail in (Clerk et al., 2010). In short, this asymmetry directly
reflects the asymmetry in the noisy system’s ability to absorb versus emit energy.
This aspect of quantum noise spectral densities provides an extremely useful route
to understanding optomechanical damping effects. While this asymmetry will not be
the main focus of our discussion here, it is useful to consider a simple but instructive
example which helps demystify two-sided quantum noise spectral densities. Consider
a harmonic oscillator that is coupled weakly to a noise force produced by a second
quantum system. This force is described by an operator F̂ , and the coupling to the
harmonic oscillator is

Ĥint = −x̂F̂ . (3.12)

Of course, the basic optomechanical Hamiltonian is an example of such a coupling,
where F̂ ∝ n̂, the intracavity photon number.

Classically, including this force in Newton’s equation yields a Langevin equation:

Mẍ = −Mω2
Mx−Mγclẋ+ Fcl(t). (3.13)

In addition to the noisy force, we have included a damping term (rate γcl). This will
prevent the oscillator from being infinitely heated by the noise source; we can think
of it as describing the average value of the force exerted on the oscillator by the noise
source, which is now playing the role of a dissipative bath. If this bath is in thermal
equilibrium at temperature T , we also expect the oscillator to equilibrate to the same
temperature. This implies that the heating effect of Fcl(t) must be precisely balanced
by the energy-loss effect of the damping force. More explicitly, one can use Eq. (3.13)
to derive an equation for the average energy of the oscillator 〈E〉. As we are assuming
a weak coupling between the bath and the oscillator, we can take γcl � ωM, and hence
find

d

dt
〈E〉 = −γcl〈E〉+

SFF [ωM]

2M
. (3.14)

where SFF [ω] is the classical noise spectral density associated with Fcl(t) (c.f. Eq. (3.9)).
Insisting that the stationary value of 〈E〉 obey equipartition then leads directly to

the classical fluctuation dissipation relation:

SFF [ωM] = 2MγclkBT. (3.15)

Let’s now look at our problem quantum mechanically. Writing x̂ in terms of lad-
der operators, we see that Ĥint will cause transitions between different oscillator Fock
states. Treating Ĥint in perturbation theory, we thus derive Fermi Golden rule transi-
tion rates Γn±1,n for transitions from the n to the n±1 Fock state. As shown explicitly
in Appendix B of (Clerk et al., 2010), these rates can be directly tied to the quantum
noise spectral density associated with F̂ . One finds:

Γn+1,n = (n+ 1)
x2

ZPF

~2
SFF [−ωM] ≡ (n+ 1)Γ↑, (3.16)

Γn−1,n = (n)
x2

ZPF

~2
SFF [ωM] ≡ nΓ↓. (3.17)
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Transitions where the noise source absorbs energy are set by the negative frequency
part of the noise spectral density, while emission is set by the positive frequency part.

We can now write a simple master equation for the probability pn(t) that the
oscillator is in the nth Fock state:

d

dt
pn = [nΓ↑pn−1 + (n+ 1)Γ↓pn+1]− [nΓ↓ + (n+ 1)Γ↑] pn. (3.18)

We can then connect this quantum picture to our classical Langevin equation by
using Eq. (3.18) to derive an equation for the average oscillator energy 〈E〉. One
obtains

d

dt
〈E〉 = −γ〈E〉+

S̄FF [ωM]

2M
, (3.19)

where:

γ =
x2

ZPF

~2
(SFF [ωM]− SFF [−ωM]) , (3.20)

S̄FF [Ω] =
SFF [ωM] + SFF [−ωM]

2
. (3.21)

We see that the quantum equation for the average energy, Eq. (3.19), has an identical
form to the classical equation (Eq. (3.14)), which gives us a simple way to connect our
quantum noise spectral density to quantities in the classical theory:

• The symmetrized quantum noise spectral density S̄FF [Ω] defined in Eq. (3.21)
plays the same role as the classical noise spectral density SFF [Ω]: it heats the
oscillator the same way a classical stochastic force would.

• The asymmetric-in-frequency part of the quantum noise spectral density SFF [Ω]
is directly related to the damping rate γ in the classical theory. The asymmetry
between absorption and emission events leads to a net energy flow between the
oscillator and the noise source, analogous to what one obtains from a classical
viscous damping force.

We thus see that there is a direct connection to a classical noise spectral density,
and moreover the “extra information” in the asymmetry of a quantum noise spectral
density also corresponds to a seemingly distinct classical quantity, a damping rate. This
latter connection is not so surprising. The asymmetry of the quantum noise is a direct
consequence of (here) [F̂ (t), F̂ (t′)] 6= 0. However, this same non-commutation causes
the average value of 〈F̂ 〉 to change in response to x̂(t) via the interaction Hamiltonian
of Eq. (3.12). Using standard quantum linear response (i.e. first-order time-dependent
perturbation theory, see e.g. Ch. 6 of (Bruus and Flensberg, 2004)), one finds

δ〈F̂ (t)〉 =

∫ ∞
−∞

dt′ χFF (t− t′)〈x̂(t′)〉, (3.22)

where the force-force susceptibility is given by the Kubo formula:

χFF (t) ≡ −i
~
θ(t)

〈[
F̂ (t), F̂ (0)

]〉
. (3.23)
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From the classical Langevin equation Eq. (3.13), we see that part of 〈F̂ (t)〉 which is
in phase with ẋ is the damping force. This leads to the definition

γ =
1

MΩ
(−Im χFF [Ω]) . (3.24)

An explicit calculation shows that the above definition is identical to Eq. (3.20), which
expresses γ in terms of the noise asymmetry. Note that in the language of many-body
Green functions, −Im χFF is referred to as a spectral function, whereas the sym-
metrized noise S̄FF [ω] is known (up to a constant) as the “Keldysh” Green function.

Quantum fluctuation-dissipation theorem and notion of effective temperature. Con-
sider the case where the quantum system producing the noise F̂ is in thermal equilib-
rium at temperature T . For weak coupling, we expect that the stationary value of 〈E〉
as given by Eq. (3.19) should match the thermal equilibrium value ~ωM (1/2 + nB [ωM]).
Insisting that this be the case forces a relation between the damping γ (which is set
by the asymmetry of the noise, c.f. Eq. (3.20)) and symmetrized noise S̄FF [ωM] which
is nothing more than the quantum version of the fluctuation dissipation theorem:

S̄FF [ωM] = Mγ[ωM] ~ωM coth

(
~ωM

2kBT

)
= Mγ[ωM] ~ωM (1 + 2nB [ωM]) . (3.25)

For kBT � ~ωM this reproduces the classical result of Eq. (3.15), whereas in the
opposite limit, it describes zero-point noise. We stress that Eq. (3.25) can also be
proved directly using nothing more than the fact that the system producing the noise
has a thermal-equilibrium density matrix.

What happens if our noise source is not in thermal equilibrium? In that case, it
is useful to use Eq. (3.25) to define an effective temperature Teff [Ω] from the ratio of
the symmetrized noise and damping. Re-writing things in terms of the quantum noise
spectral density, one finds

kBTeff [Ω] ≡ ~Ω

[
ln

(
SFF [Ω]

SFF [−Ω]

)]−1

. (3.26)

The effective temperature at a given frequency Ω characterizes the asymmetry between
absorption and emission rates of energy ~Ω; a large temperature indicates that these
rates are almost equal, whereas a small temperature indicates that emission by the
noise source is greatly suppressed compared to absorption by the source. Away from
thermal equilibrium, there is no guarantee that the ratio on the RHS will be frequency-
independent, and hence Teff will generally have a frequency dependence.

3.3 Heisenberg inequality on detector quantum noise

3.3.1 Generic two-port linear response detector

Having discussed two of the ways quantum noise spectral densities differ from their
classical counterparts (zero-point noise, frequency asymmetry), we now turn to the
third distinguishing feature: there are purely quantum constraints on the noise prop-
erties of any system capable of acting as a detector or amplifier. We will be interested
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Fig. 3.1 (Color online) Schematic of a generic linear response detector.

in the generic two-port detector sketched in Fig. 3.1. The detector has an input port
characterized by an operator F̂ : this is the detector quantity which couples to the
system we wish to measure. Similarly, the output port is characterized by an operator
Î: this is the detector quantity that we will readout to learn about the system coupled
to the input. In our optomechanical system, F̂ would be the cavity photon number
n̂, while Î would be proportional to the phase quadrature of the output field of the
cavity (c.f. Eq. (3.3)).

We will be interested almost exclusively in detector-signal couplings weak enough
that one can use linear-response to describe how Î changes in response to the signal. For
example, if we couple an input signal x̂ to our detector via an interaction Hamiltonian

Ĥint = x̂ · F̂ , (3.27)

linear response tells us that the change in the detector output will be given by:

δ〈Î(t)〉 =

∫ ∞
−∞

dt′χIF (t− t′)〈x̂(t′)〉, (3.28)

χIF (t) = − i
~
θ(t)

〈
[Î(t), F̂ (0)]

〉
. (3.29)

This is completely analogous to the way we discussed damping, c.f. Eq. (3.24). As is
standard in linear-response, the expectation value in Eq. (3.29) is with respect to the
state of the system (signal plus detector) at zero coupling (i.e. Ĥint = 0). Also, without
loss of generality, we will assume that both 〈Î〉 and 〈F̂ 〉 are zero in the absence of any
coupling to the input signal.

Even on a classical level, any noise in the input and output ports will limit our
ability to make measurements with the detector. Quantum mechanically, we have seen
that it is the symmetrized quantum spectral densities that play a role analogous to
classical noise spectral densities. We will thus be interested in the quantities S̄II [ω]
and S̄FF [ω]. Given our interest in weak detector-signal couplings, it will be sufficient
to characterize the detector noise at zero-coupling to the detector.

In addition to S̄II , S̄FF , we will also have to contend with the fact that the noise
in Î and F̂ may be correlated. Classically, we would describe such correlations via a
correlation spectral density SIF [ω]:
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SIF [ω] ≡ lim
T→∞

〈IT [ω] (FT [ω])
∗〉 =

∫ ∞
−∞

dt 〈I(t)F (0)〉eiωt, (3.30)

where the Fourier transforms IT [ω] and FT [ω] are defined analogously to Eq. (3.8). Not
surprisingly, such classical correlations correspond to a symmetrized quantum noise
spectral density

S̄IF [ω] ≡ 1

2

∫ ∞
−∞

dt 〈{Î(t), F̂ (0)}〉eiωt. (3.31)

Note that the classical correlation density SIF [ω] is generally complex, and is only
guaranteed to be real at ω = 0; the same is true of S̄IF [ω].

Finally, we normally are only concerned about how large the output noise is com-
pared to the magnitude of the “amplified” input signal at the output (i.e. Eq. (3.28)).
It is thus common to think of the output noise at a given frequency δIT [ω] as an equiva-
lent fluctuation of the signal δzimp[ω] ≡ δIT [ω]/χIF [ω]. We thus define the imprecision
noise spectral density and imprecision-back-action correlation density as:

S̄zz[ω] ≡ S̄II [ω]

|χIF [ω]|2 , S̄zF [ω] ≡ S̄IF [ω]

χIF [ω]
. (3.32)

3.3.2 Motivation and derivation of noise constraint

We can now ask what sort of constraints exist on the detector noise. In almost all
relevant cases, our detector will be some sort of driven quantum system, and hence
will not be in thermal equilibrium. As a result, any meaningful constraint should not
rely on having a thermal equilibrium state. Classically, all we can say is that the
correlations in the noise cannot be bigger than the noise itself. This constraint takes
the form of a a Schwartz inequality, yielding

Szz[ω]SFF [ω] ≥ |SzF [ω]|2 . (3.33)

Equality here implies a perfect correlation, i.e. IT [ω] ∝ FT [ω].
Quantum mechanically, additional constraints will emerge. Heuristically, this can

be expected by making an analogy to the example of the Heisenberg microscope.
In that example, one finds that there is a tradeoff between the imprecision of the
measurement (i.e. the position resolution) and the back-action of the measurement
(i.e. the momentum kick delivered to the particle). In our detector, noise in Î will
correspond to the imprecision of the measurement (i.e. the bigger this noise, the harder
it will be to resolve the signal described by Eq. (3.28)). Similarly, noise in F̂ is the
back-action: as we already saw, by virtue of the detector-signal coupling, F̂ acts as a
noisy force on the measured quantity ẑ. We thus might naturally expect a bound on
the product of S̄zzS̄FF .

Alternatively, we see from Eq. (3.29) that for our detector to have any response
at all, Î(t) and F̂ (t′) cannot commute for all times. Quantum mechanically, we know
that uncertainty relations apply any time we have non-commuting observables; here
things are somewhat different, as the non-commutation is between Heisenberg-picture
operators at different times. Nonetheless, we can still use the standard derivation of an
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uncertainty relation to obtain a useful constraint. Recall that for two non-commuting
observables Â and B̂, the full Heisenberg inequality is (see, e.g. (Gottfried, 1966))

(∆A)2(∆B)2 ≥ 1

4

〈{
Â, B̂

}〉2

+
1

4

∣∣∣〈[Â, B̂]〉∣∣∣2 . (3.34)

Here we have assumed 〈Â〉 = 〈B̂〉 = 0. We now take Â and B̂ to be cosine-transforms
of Î and F̂ , respectively, over a finite time-interval T :

Â ≡
√

2

T

∫ T/2

−T/2
dt cos(ωt+ δ) Î(t), B̂ ≡

√
2

T

∫ T/2

−T/2
dt cos(ωt) F̂ (t). (3.35)

Note that we have phase shifted the transform of Î relative to that of F̂ by a phase δ.
In the limit T →∞ we find

S̄zz[ω]S̄FF [ω] ≥
[
Re

(
eiδS̄zF [ω]

)]2
+

~2

4

[
Re eiδ

(
1− (χFI [ω])

∗

χIF [ω]

)]2

. (3.36)

We have introduced here a new susceptibility χFI [ω], which describes the reverse
response coefficient or reverse gain of our detector. This is the response coefficient
relevant if we used our detector in reverse: couple the input signal ẑ to Î, and see
how 〈F̂ 〉 changes. A linear response relation analogous to Eq. (3.28) would then apply,
with F ↔ I everywhere. For the optomechanical system we are most interested in,
this reverse response coefficient vanishes: coupling to the output field from the cavity
cannot change the intracavity photon number (and hence F̂ ). We thus take χFI [ω] = 0
in what follows (see (Clerk, Devoret, Girvin, Marquardt and Schoelkopf, 2010) for
further discussion on the role of a non-zero χFI [ω]).

If we now maximize the RHS of Eq. (3.36) over all values of δ, we are left with the
optimal bound

S̄zz[ω]S̄FF [ω]−
∣∣S̄zF [ω]

∣∣2 ≥ ~2

4

(
1 + ∆

[
2S̄zF [ω]

~

])
, (3.37)

where

∆[y] =

∣∣1 + y2
∣∣− (1 + |y|2

)
2

, (3.38)

Note that for any complex number y, 1 + ∆[y] > 0. Related noise constraints on
linear-response detectors are presented in (Braginsky and Khalili, 1996) and (Averin,
2003).

We see that applying the uncertainty principle to our detector has given us a
rigorous constraint on the detector’s noise which is stronger than the simple classical
bound of Eq. (3.33) on its correlations. For simplicity, consider first the ω → 0 limit,
where all noise spectral densities and susceptibilities are real, and hence the term
involving ∆[y] vanishes. The extra quantum term on the RHS of Eq. (3.36) then
implies:
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• The product of the imprecision noise S̄zz and back-action noise S̄FF cannot be
zero. The magnitude of both kinds of fluctuations must be non-zero.

• Moreover, these fluctuations cannot be perfectly correlated with one another: we

cannot have
(
S̄zF

)2
= S̄zzS̄FF .

The presence of these extra quantum constraints on noise will lead directly (and
rigorously!) to the fundamental quantum limits on continuous position detection. As we
will see, reaching this quantum limit requires one to use a detector which has “ideal”
quantum noise (i.e. noise spectral densities for which the inequality of Eq. (3.37)
becomes an equality).

3.4 Power gain and the large gain limit

Before finally turning to defining and deriving the quantum limit on the added noise,
there is one more crucial aspect of the detector to address: the notion of “power gain”.
We are interested in detectors that turn the motion x(t) of the mechanical resonator
into a “large” signal in the output of the detector, a signal so large that we do not
need to worry about how this detector output is then read out. To be able to say that
our detector truly amplifies the motion of the oscillator, it is not sufficient to simply
say the response function χIF must be large (note that χIF is not dimensionless!).
Instead, true amplification requires that the power delivered by the detector to a
following amplifier be much larger than the power drawn by the detector at its input–
i.e., the detector must have a dimensionless power gain GP [ω] much larger than one.
If the power gain was not large, we would need to worry about the next stage in the
amplification of our signal, and how much noise is added in that process. Having a
large power gain means that by the time our signal reaches the following amplifier, it
is so large that the added noise of this following amplifier is unimportant.

The power gain of our position detector can be defined by imagining a situation
where one couples a second auxiliary oscillator to the output of the detector, such
that I(t) acts as a driving force on this oscillator. The power gain is then defined
as the power delivered to this auxiliary oscillator, divided by the power drawn from
the measured mechanical resonator coupled to the detector output (optimized over
properties of the auxiliary oscillator). The calculation is presented in Appendix A,
and the result is the simple expression:

GP [ω] ≡ max

[
Pout

Pin

]
=

|χIF [ω]|2
4 (ImχFF [ω]) (ImχII [ω])

(3.39)

The susceptibility χII [ω] is defined analogously to Eq. (3.23). Note that if there is
no additional back-action damping of the measured oscillator by the detector, then
Im χFF vanishes, and the power gain is strictly infinite. As we will see, this the case
for an optomechanical cavity driven on resonance.

Having a large power gain also implies that we can treat the detector quantities
Î(t) and F̂ (t) as being effectively “classical”. A large power gain over some relevant
frequency range implies that the imaginary parts of χII and χFF are negligible over
this range. From Eqs. (3.20) and (3.24), this implies that the quantum noise spectral
densities SII [ω], SFF [ω] are to a good approximation symmetric over these frequencies,



Defining the quantum limit 21

just like a classical noise spectral density. This in turn implies that one can effectively
treat [Î(t), Î(t′)] = [F̂ (t), F̂ (t′)] = 0 (i.e. these operators commute at differnent times,
just like a classical noisy function of time). We note that in many discussions of lin-
ear quantum measurements, the fact that the detector input and output quantities
commute with themselves at different times is taken as a starting assumption in cal-
culations (see, e.g. (Braginsky and Khalili, 1992; Khalili et al., 2012), as well as the
lectures by Y. Chen).

Requiring both the quantum noise inequality in Eq. (3.37) to be saturated at
frequency ω as well as a large power gain (i.e. GP [ω] � 1) leads to some important
additional constraints on the detector, as derived in Appendix I of (Clerk et al., 2010):

• (2/~)Im S̄zF [ω] is small like 1/
√
GP [ω].

• The detector’s effective temperature must be much larger than ~ω; one finds

kBTeff [ω] ∼
√
GP [ω]~ω. (3.40)

Conversely, it is the largeness of the detector’s effective temperature that allows
it to have a large power gain.

3.5 Defining the quantum limit

Having now understood the proper way to discuss the “size” of noise, as well as the ex-
istence of quantum constraints on noise, we can now return to the question posed at the
start of this chapter: how small can we make the added noise δxadd(t) (c.f. Eq. (3.6))
of a generic linear-response position detector? We assume that, like in our optome-
chanical setup, the detector couples to mechanical position via a Hamiltonian:

Ĥint = x̂ ·
(
AF̂
)

(3.41)

Note that unlike the generic system-detector interaction in Eq.(3.27), we have included
a coupling strength in the definition of the system operator F̂ . We assume that A is
weak enough that the detector output responds linearly to changes in position.

3.5.1 Added noise spectral density

We start by returning to the heuristic classical expression in Eq. (3.6) for the detector
output current I(t) and added noise δxadd(t), and Fourier transform these expression.
From linear response theory, we know that the response coefficient λ in that expression
should be replaced by λ → AχIF [ω], where the frequency dependence parameterizes
that the detector output will not respond instantaneously to changes at the input.

I[ω] = AχIF [ω] (x[ω] + δxadd[ω]) (3.42)

δxadd[ω] = δxBA[ω] +
δI0[ω]

AχIF [ω]
(3.43)

The first back-action term is just the mechanical response to the back-action force
fluctuations:
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δxBA[ω] = Aχxx[ω]δF [ω], (3.44)

where χxx[ω] is the oscillator’s force susceptibility 1, and is given by

Mχxx[ω] =
(
ω2 − ω2

M + iωγ0

)−1
. (3.45)

To state the quantum limit on position detection, we first define the total measured
position fluctuations xmeas[ω] as simply the total detector output I[ω] referred back
to the oscillator:

xmeas[ω] = Itot[ω]/(AχIF [ω]). (3.46)

If there was no added noise, and further, if the oscillator was in thermal equilibrium at
temperature T , the spectral density describing the fluctuations δxmeas(t) would simply
be the equilibrium fluctuations of the oscillator, as given by the fluctuation-dissipation
theorem:

S̄meas
xx [ω] = S̄eq

xx[ω, T ] = ~ coth

(
~ω

2kBT

)
[−Im χxx[ω]] (3.47)

=
x2

ZPF(1 + 2nB)

2

∑
σ=±

γ0

(ω − σΩ)2 + (γ0/2)2
. (3.48)

Here, γ0 is the intrinsic damping rate of the oscillator, which we have assumed to be
� Ω.

Including the added noise, and for the moment ignoring the possibility of any
additional oscillator damping due to the coupling to the detector, the above result
becomes

S̄meas
xx [ω] = S̄eq

xx[ω, T ] + S̄add
xx [ω] (3.49)

where the last term is the spectral density of the added noise (both back-action and
imprecision noise).

We can now, finally, state the quantum limit on continuous position detection: at
each frequency ω, we must have

S̄add
xx [ω] ≥ S̄eq

xx[ω, T = 0]. (3.50)

The spectral density of the added noise cannot be made arbitrarily small: at each
frequency, it must be at least as large as the corresponding zero-point noise. Note that
we do not call this the “standard” quantum limit. As we will discuss later, what is
usually termed the standard quantum limit (e.g. in the gravitational wave detection
community) only coincides with Eq. (3.50) exactly at resonance (ω = ωM), and for
other frequencies does not represent any kind of true quantum bound. The various
contributions to the added noise spectral density are shown in Fig. 3.2.

Finally, the above result can be refined to include situations where the coupling to
the detector also changes the mechanical damping (in addition to driving it with extra

1Strictly speaking, with our definitions the force susceptibility is −χxx[ω], and the force driving

the mechanics is -F̂ . This is because we took the interaction Hamiltonian to be Ĥint = +x̂F̂ instead
of the more physical Ĥint = −x̂F̂ .
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Fig. 3.2 Spectral density of a mechanical resonator’s position fluctuations as measured by a

quantum limited position detector. The mechanical resonator’s intrinsic fluctuations (for the

case of a zero-temperature oscillator) are shown in blue. The back-action of the position de-

tector will effectively heat the mechanical resonator, increasing the area under the Lorentzian;

this is shown as the orange area. Finally, there is also imprecision noise, the fluctuations in

the detector output that would be present even without any coupling to the mechanical res-

onator. These typically give frequency independent noise, giving a flat background. The ideal

case where the quantum-limit is reached on the added noise at mechanical resonance is the

yellow area.

fluctuations). Letting γBA denote this extra damping, the added noise is now defined
via

S̄meas
xx [ω] =

γ0

γBA + γ0
S̄eq
xx[ω, T ] + S̄add

xx [ω], (3.51)

where the susceptibility χxx now involves the total damping of the oscillator, i.e.:

Mχxx[ω] =
(
ω2 − ω2

M + iω(γ + γBA)
)−1

. (3.52)

With this definition, the quantum limit on the added noise is unchanged from the limit
stated in Eq. (3.50).

3.5.2 A possible correlation-based loophole?

Our heuristic formulation of the quantum limit naturally leads to a possible concern.
Even though quantum mechanics may require a position measurement to have a back-
action (as position and momentum are conjugate quantities), couldn’t this back-action
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noise be perfectly anti-correlated with the imprecision noise? If this were the case, the
added noise δx(t) (which is the sum of the two contributions, c.f. Eq. (3.43)) could be
made to vanish.

One might hope that this sort of loophole would be explicitly forbidden by the
quantum noise inequality of Eq. (3.37). However, this is not the case. Even in the ideal
case of zero reverse gain, one can achieve a situation where back-action and imprecision
are perfectly correlated at a given non-zero frequency ω. One needs:

• The correlator S̄IF [ω] should purely imaginary; this implies that the part of F (t)
that is correlated with I(t) is 90 degrees out of phase. Note that S̄IF [ω] can only
be imaginary at non-zero frequencies.

• The magnitude of S̄IF [ω] should be larger than ~/2
Under these circumstances, one can verify that there is no additional quantum con-
straint on the noise beyond what exists classically, and hence the perfect correlation
condition of S̄FF [ω]S̄II [ω] = |S̄IF [ω]|2 is allowable. The π/2 phase of the back-action-
imprecision correlations are precisely what is needed to make δxadd[ω] vanish at the
oscillator resonance, ω = Ω.

As might be expected, this seeming loophole is not a route to ideal, noise-free
position detection free from quantum constraints. As already discussed, we need to
be more careful in specifying what we want our detector to do. We aren’t interested
in just having the mechanical motion show up in the detector output I(t), we want
there to be amplification associated with this process– the mechanical signal should be
“bigger” at the output than it is at the input. It is only when we insist on amplification
that there are quantum constraints on added noise; a passive transducer need not add
any noise. On a heuristic level, one could view amplification as an effective expansion
of the phase space of the oscillator. Such a pure expansion is of course forbidden by
Liouville’s theorem, which tells us that volume in phase space in conserved. The way
out is to introduce additional degrees of freedom, such that for these degrees of freedom
phase space contracts. Quantum mechanically such degrees of freedom necessarily have
noise associated with them (at the very least, zero-point noise); this then is the source
of the limit on added noise.

The requirement that our detector produces a large signal is that the power gain
(as defined in Sec. 3.4) should be much larger than one. In that case, back-action-
imprecision correlations must be purely real, and the possibility of zero added noise
(due to perfect correlations) is excluded.

3.6 Derivation of the quantum limit

We now turn to a rigorous proof of the quantum limit on the added noise given in
Eq. (3.50). From the classical-looking Eq. (3.43), we expect that the symmetrized
quantum noise spectral density describing the added noise will be given by

S̄xx,add[ω] =
S̄II

|χIF |2A2
+A2 |χxx|2 S̄FF +

2Re
[
χ∗IF (χxx)

∗
S̄IF

]
|χIF |2

(3.53)

=
S̄zz
A2

+A2 |χxx|2 S̄FF + 2Re
[
(χxx)

∗
S̄zF

]
. (3.54)
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In the second line, we have introduced the imprecision noise S̄zz and imprecision
back-action correlation S̄zF as in Eq. (3.32). We have also omitted writing the explicit
frequency dependence of the gain χIF , susceptibility χxx, and noise correlators; they
should all be evaluated at the frequency ω. Finally, the oscillator susceptibility χxx
here is given by Eq. (3.52), and includes the effects of back-action damping. While
we have motivated this equation from a seemingly classical noise description, the full
quantum theory also yields the same result: one simply calculates the detector output
noise perturbatively in the coupling to the oscillator (Clerk, 2004).

The first step in determining the limit on the added noise is to consider its depen-
dence on the coupling strength strength A. If we ignore for a moment the detector-
dependent damping of the oscillator, there will be an optimal value of the coupling
strength A which corresponds to a trade-off between imprecision noise and back-action
(i.e. first and second terms in Eq. (3.53)). We would thus expect S̄xx,add[ω] to attain
a minimum value at an optimal choice of coupling A = Aopt where both these terms
make equal contributions. Defining φ[ω] = argχxx[ω], we thus have the bound

S̄xx,add[ω] ≥ 2|χxx[ω]|
(√

S̄zzS̄FF + Re
[
e−iφ[ω]S̄zF

])
, (3.55)

where the minimum value at frequency ω is achieved when

A2
opt =

√
S̄zz[ω]

|χxx[ω]|2S̄FF [ω]
. (3.56)

Using the inequality X2 + Y 2 ≥ 2|XY | we see that this value serves as a lower bound
on S̄xx,add even in the presence of detector-dependent damping. In the case where
the detector-dependent damping is negligible, the RHS of Eq. (3.55) is independent of
A, and thus Eq. (3.56) can be satisfied by simply tuning the coupling strength A; in
the more general case where there is detector-dependent damping, the RHS is also a
function of A (through the response function χxx[ω]), and it may no longer be possible
to achieve Eq. (3.56) by simply tuning A.

While Eq. (3.55) is certainly a bound on the added displacement noise S̄xx,add[ω],
it does not in itself represent the quantum limit. Reaching the quantum limit re-
quires more than simply balancing the detector back-action and intrinsic output noises
(i.e. the first two terms in Eq. (3.53)); one also needs a detector with “quantum-ideal”
noise properties, that is a detector which optimizes Eq. (3.37). Using the quantum
noise constraint of Eq. (3.37) to further bound S̄xx,add[ω], we obtain

S̄xx,add[ω] ≥ ~ |χxx[ω]|
[√(

1 + ∆

[
S̄zF
~/2

])
+

∣∣∣∣ S̄zF~/2

∣∣∣∣2 +
Re

[
e−iφ[ω]S̄zF

]
~/2

]
,(3.57)

where the function ∆[z] is defined in Eq. (3.38). The minimum value of S̄xx,add[ω] in
Eq. (3.57) is now achieved when one has both an optimal coupling (i.e. Eq. (3.56))
and a quantum limited detector, that is one which satisfies Eq. (3.37) as an equality.

Next, we further specialize to the relevant case where the detector acts as a good
amplifier, and has a power gain GP [ω] � 1 over all frequencies of interest. As dis-
cussed, this implies that the ratio S̄zF is purely real up to small 1/GP corrections (see
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Appendix I of Ref. (Clerk et al., 2010) for more details). This in turn implies that
∆[2S̄zF /~] = 0; we thus have

S̄xx,add[ω] ≥ ~|χxx[ω]|

√1 +

(
S̄zF
~/2

)2

+ cos (φ[ω])
S̄zF
~/2

 . (3.58)

Finally, as there is no further constraint on S̄zF (beyond the fact that it is real),
we can minimize the expression over its value. The minimum S̄xx,add[ω] is achieved for
a detector whose cross-correlator satisfies

S̄zF [ω]
∣∣∣
optimal

=
~
2

cotφ[ω] = −~
2

ω2 − ω2
M

ωγ
, (3.59)

with the minimum value of the added noise being given precisely by

S̄xx,add[ω]
∣∣∣
min

= ~|Im χxx[ω]| = lim
T→0

S̄xx,eq[ω, T ], (3.60)

in agreement with Eq. (3.50). Thus, in the limit of a large power gain, we have that
at each frequency, the minimum displacement noise added by the detector is precisely
equal to the noise arising from a zero temperature bath.

3.7 Simple limits and discussion

We have thus provided a rigorous derivation of the quantum limit on the added noise
of a continuous position detector which possesses a large gain. The derivation shows
explicitly what is needed to reach the quantum-limit, namely:

1. A detector with quantum limited noise properties, that is one which optimizes
the inequality of Eq. (3.37).

2. A coupling A which satisfies Eq. (3.56).

3. A detector cross-correlator S̄IF which satisfies Eq. (3.59).

It is worth stressing that Eq. (3.59) implies that it will not in general be possible
to achieve the quantum limit simultaneously at all frequencies, as the needed amount
of back-action-imprecision correlation varies strongly with frequency. We consider a
few important limits below.

3.7.1 Quantum limit on added noise at resonance ω = ωM

To reach the quantum limit on the added noise at the mechanical resonance, Eq. (3.59)
tells us that S̄zF [ω] must be zero: back-action and imprecision noises should be com-
pletely uncorrelated. If this is the case, reaching the quantum limit simply involves
tuning the coupling A to balance the contributions from back-action and imprecision
to the added noise. As we will see, in our optomechanical cavity, this is equivalent to
optimizing the choice of the driving power.
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This remaining condition on the coupling (again, in the limit of a large power gain)
may be written as

γBA[Aopt]

γ0 + γBA[Aopt]
=

~Ω

4kBTeff
. (3.61)

As γBA[A] ∝ A2 is the back-action-induced damping of the oscillator (c.f. Eq. (3.20)),
we thus have that to achieve the quantum-limited value of S̄xx,add[Ω] with a large power
gain, one needs the intrinsic damping of the oscillator to be much larger than the back-
action damping. The back-action damping must be small enough to compensate the
large effective temperature of the detector; if the bath temperature satisfies ~Ω/kB �
Tbath � Teff , Eq. (3.61) implies that at the quantum limit, the temperature of the
oscillator will be given by

Tosc ≡
γBA · Teff + γ0 · Tbath

γBA + γ0
→ ~Ω

4kB
+ Tbath. (3.62)

Thus, at the quantum limit and for large Teff , the detector raises the oscillator’s
temperature by ~Ω/4kB.2 As expected, this additional heating is only half the zero-
point energy; in contrast, the quantum-limited value of S̄xx,add[ω] corresponds to the
full zero-point result, as it also includes the contribution of the intrinsic output noise
of the detector.

3.7.2 Quantum limit on added noise in the free-mass limit ω � ωM

In gravitational wave detection, one is usually interested in the added noise at fre-
quencies far above resonance, where the mechanical dynamics are effectively like those
of a free mass. In this case, Eq. (3.59) tells us that reaching the quantum limit on the
added noise requires back-action imprecision correlations satisfying:

S̄zF [ω]
∣∣∣
optimal

→ −~ω
2γ

(3.63)

In the limit where ω � γ, the correlations are huge, implying that the optimal situation
is to have back-action and imprecision noises be almost perfectly correlated. If one
could achieve this, the quantum limited value of the added noise is given by:

S̄xx,add[ω]→ ~γ
mω3

(3.64)

In contrast to the full quantum limit above, one often discusses the “standard
quantum limit” in the gravitational wave detection community. This is the minimum
added noise possible (in the free mass limit) if you use a detector with quantum-ideal
noise (i.e. saturates the inequality of Eq. (3.37)) but which has S̄zF [ω] = 0. In this

2If in contrast our oscillator was initially at zero temperature (i.e. Tbath = 0), one finds that
the effect of the back-action (at the quantum limit and for GP � 1) is to heat the oscillator to a
temperature ~Ω/(kB ln 5) ' 0.62~Ω/kB.
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case, the only optimization involves tuning the coupling to balance back-action and
imprecision noises, and one finds:

S̄xx,add[ω]
∣∣∣
SQL

= ~|χxx[ω]| → ~
mω2

(3.65)

One sees that this larger than the true quantum limit by a large factor ω/γ.
The take-home message here is that while reaching the true quantum limit for ω �

ωM might be challenging, one can do much better than the “standard” quantum limit
by using a detector having back-action-imprecision correlations. In the next chapter,
we will review how injecting squeezed light into an optomechanical cavity can achieve
this goal.

3.8 Applications to an optomechanical cavity (with and without
input squeezing)

We now apply our general approach for formulating the quantum limit to the specific
case of an optomechanical cavity detector, as introduced in the first chapter. We
consider a cavity which is strongly driven on resonance (implying that the detuning
∆ = 0), and which can be treated using the linearized equations of motion introduced
in chapter 1. Our starting point is thus Eq. (2.25) for the displaced cavity field, with
∆ = 0. We will further work in the regime where the mechanical frequency ωM � κ,
and we are interested in d̂[ω] at frequencies ω � κ. To capture the behaviour at these

frequencies, we can make the adiabatic approximation, and ignore the (d/dt)d̂ term
on the LHS of Eq. (2.25). Defining A = G/xZPF = gā/xZPF, we have:

d̂(t) ' −2iA

κ
x̂(t)− 2√

κ
d̂in(t) (3.66)

where the effective coupling strength A is given by:

A =
G

xZPF
=

gācl

xZPF
(3.67)

We see that, as anticipated, the effective coupling strength is indeed dependent on the
strength of the cavity driving field. Using the input-output relation of Eq. (2.15), we
also find:

d̂out(t) = d̂in(t) +
√
κd̂(t) ' −2iA√

κ
x̂(t)− d̂in(t) (3.68)

We can use these results to calculate the needed noise properties: the fluctuations
in the back-action force acting on the mechanics, and the fluctuations in the detec-
tor output quantity, the phase quadrature of the output light defined in Eq. (3.3).
The back-action force operator corresponds to the fluctuating part of the intra-cavity
photon number. Keeping only the drive-enhanced term in this operator, we have that:

A · F̂ ≡ ~A
(
d̂+ d̂†

)
(3.69)
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We need to understand the fluctuations of F̂ in the absence of any optomechanical
coupling; we can thus substitute in Eq. (3.66) at A = 0 to find:

F̂ = − 2~√
κ

(
d̂in(t) + d̂†in(t)

)
(3.70)

Similarly, the output quantity is given by the phase quadrature of the cavity output
field, Eq. (3.3) 3:

Î = i
(
dout − d̂†out

)
(3.71)

=
4A√
κ
x̂(t)− i

(
d̂in − d̂†in

)
≡ AχIF x̂(t) + Î0 (3.72)

We thus directly can read-off both the response coefficient χIF = 4/
√
κ of the detector

(which is frequency independent as we focus on ω � κ), and the intrinsic imprecision
noise in the output Î0.

We see that two orthogonal (and hence canonically conjugate) quadratures of the

input noise d̂in entering the cavity determine the two kinds of relevant noise (back-
action and imprecision). This is to be expected: it is fluctuations in the amplitude
quadrature of the incident drive that cause photon number fluctuations and hence
back-action, while it is the phase quadrature fluctuations which give imprecision noise.

3.8.1 Vacuum noise input

Taking the input noise to be vacuum noise and using Eqs. (2.10),(2.11), it is straight-
forward to calculate the needed noise correlators:

S̄FF [ω] =
4~2

κ
, S̄II [ω] = 1 S̄IF [ω] = 0 (3.73)

Note crucially that there are no correlations between back-action and imprecision
noise, as they correspond to conjugate quadratures of the input vacuum noise. The
vanishing of correlations can ultimately be traced back to the fact that averages like
〈d̂in(t)d̂in(t′)〉 are always zero in the vacuum state.

It thus follows that:

S̄zzS̄FF ≡
S̄II S̄FF
χ2
IF

=
4~2/κ

16/κ
=

~2

4
(3.74)

Our driven cavity thus optimizes the quantum noise inequality of Eq. (3.37), but has
no back-action-imprecision correlations. From our general discussion, this implies that
it is able to reach the quantum limit on the added noise exactly at the mechanical
resonance, but away from resonance, misses the true quantum limit by a large amount.

3There is in principle a proportionality constant between Î and the phase quadrature of the output
field; however, this constant plays no role in determining the detector added noise, so we set it to
unity.
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In the case where one wishes to reach the quantum limit on resonance, it is inter-
esting to ask what the optimal coupling strength is using Eq. (3.56). It is convenient
to parameterize the coupling in terms of the cooperativity C, defined as:

C ≡ 4G2

κγ
(3.75)

The optimal coupling required to reach the quantum limit on resonance then becomes:

Copt =
1

4
(3.76)

3.8.2 Noise correlations via “variational” readout

As we have seen, reaching the quantum limit in the free mass limit (i.e. at frequencies
much larger than ωM) requires strong correlations between the back-action noise in F̂
and the imprecision noise in Î0, c.f. Eq. (3.63). These correlations are absent in the
simplest scheme described above, as the back-action and imprecision noise operators
correspond to conjugate quadratures of the input vacuum noise.

An extremely simple way to induce correlations between back-action and impreci-
sion is to alter the choice of which quadrature of the cavity output field to measure.
Suppose instead of the choice in Eq. (3.71), we chose to measure the output quadrature:

Înew ≡ i
(
eiϕd̂out − e−iϕd̂†out

)
= cosϕÎold − sinϕ

(
F̂

2~/
√
κ

)
(3.77)

where the angle ϕ determines the particular choice of quadrature. ϕ = 0 corresponds
to the measuring the phase quadrature as before, and ensures that Î has a maximal
sensitivity to x̂ (as x̂ only appears in the imaginary part of d̂out, c.f. Eq. (3.68)). By
taking ϕ 6= 0, we reduce the response coefficient χIF , but trivially induce back-action
- imprecision correlations, as now the measured detector output includes explicitly the
back-action fluctuations F̂ . For an arbitrary choice of ϕ, one finds that S̄FF and S̄II
are unchanged from Eq. (3.73), but:

χIF =
4 cosϕ√

κ
S̄IF [ω] = − sinϕ

2~√
κ

(3.78)

The detector still saturates the Heisenberg bound on its quantum noise:

S̄zzS̄FF − S̄2
zF ≡

S̄II S̄FF − S̄2
IF

χ2
IF

=
(4~2/κ)(1− sin2 ϕ)

16 cos2 ϕ/κ
=

~2

4
(3.79)

Thus, this strategy in principle allows one to reach the quantum limit on the added
noise for frequencies away from mechanical resonance, where one requires a non-zero
cross-correlator. In the free-mass limit ω � ωM, the optimal value of S̄zF is given by
Eq. (3.63). Achieving this value requires:

~
2

tanϕ =
ω

γ
(3.80)

One sees that the required choice of ϕ is frequency dependent. To achieve the opti-
mal correlations over a finite range of frequencies, one could first apply a frequency-
dependent rotation to the output field from the optomechanical cavity (using, e.g. a
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second detuned cavity), and then measure a fixed quadrature. Perhaps more troubling
is the fact that the RHS of the above equation is typically extremely large, implying
that ϕ → π/2. In this limit, the measured output quantity is almost equivalent to
the amplitude quadrature of the input noise incident on the cavity, and has almost no
information on the state of the mechanics.

The above approach is known as the “variational” readout strategy in the gravi-
tational wave detection community (Vyatchanin and Zubova, 1995; Vyatchanin and
Matsko, 1996), and is also discussed (in a slightly different way) in the lectures of Yan-
bei Chen. While this seems like a simple strategy for reaching the quantum limit away
from mechanical resonance, in practice it is not a good strategy: the strong reduction
in the size of the signal means that even though the intrinsic detector noise may be as
small as required by quantum mechanics, other non-intrinsic sources of added noise
will start to dominate. In short, reaching the quantum limit by throwing away signal
strength is almost never a good strategy.

3.8.3 Noise correlations via squeezing

We would like to find a way to induce the needed noise correlations for reaching the
quantum limit away from mechanical resonance, while at the same time not modifying
the size of the measured signal in the output of our detector. The trick will be to modify
the input noise driving the cavity. It is convenient to introduce canonical (Hermitian)
quadratures of the input noise din(t) via:

d̂in =
1√
2

(
X̂in + iŶin

)
(3.81)

As we have seen, back-action is controlled by X̂in and imprecision noise by Ŷin. A
straightforward calculation shows that

S̄zF = ~S̄Yin,Xin
(3.82)

Hence, back-action imprecision noise correlations require a state where the fluctuations
in the two quadratures of the input noise are strongly correlated. Further, we still
require that the quantum noise inequality of Eq. (3.37) be saturated, even in the
presence of strong correlations. The required input noise corresponds to a quantum
squeezed state (see, e.g., (Gerry and Knight, 2005) for an extensive discussion). In
phase space, the Wigner function of such a state has elliptical iso-probability contours
(as opposed to the circular contours of a vacuum state or thermal state). The elongated
direction of the ellipse should be aligned so as to yield the desired large correlations.
As the needed correlations should be negative, the “squeezed” direction of the ellipse
(direction with minimal fluctuations) corresponds to the quadrature:

X̃in =
1√
2

(
X̂in + Ŷin

)
(3.83)

For a squeezed state where X̃ is the squeezed quadrature, we have:

S̄X̃inX̃in
=

1

2
e−2r (3.84)
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where r ≥ 0 is the squeeze parameter. Reaching the quantum limit at a frequency
ω � ωM with our cavity detector thus requires one to use an input squeezing with a
squeezing magnitude

e−2r =
γ

2ω
. (3.85)

The idea of using squeezing to generate strong back-action-imprecision correlations
was discussed extensively in (Pace, Collett and Walls, 1993) (albeit using a somewhat
different formulation), and is also discussed in the lectures of Y. Chen. We stress that
the use of squeezing is to generate correlations; it is not being used to make up for a
lack of incident laser power (i.e. ācl too small).

An alternate use of squeezing which is equivalent to tuning the incident optical
power was discussed in the seminal work (Caves, 1981). Imagine one wants to reach the
quantum limit at mechanical resonance, but cannot achieve the optical power required
to balance the contributions from back-action and imprecision noises, i.e. achieve the
condition in Eq. (3.76). Squeezing can help in this situation. If one squeezes the phase
quadrature of the incident light Ŷin (and thus necessarily amplifies the amplitude
quadrature X̂in), the back-action noise is enhanced, and the imprecision noise reduced.
Hence, input squeezing in this case is equivalent to boosting the magnitude of the cavity
drive, i.e. increasing the cooperativity C. Squeezing in this case does not generate any
back-action-imprecision correlations.
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Backaction evasion and conditional
squeezing

In this chapter, we discuss a method for monitoring mechanical position that is not
subject to any fundamental quantum limit. As the quantum limit of the previous
chapter is indeed a true, unavoidable limit, the only way to do better is to somehow
change the rules of the game. Here, this is accomplished by being more modest in what
we choose to measure. Recall that a standard weak, continuous position measurement
one attempts to measure both quadrature components of the mechanical motion. i.e.
X(t) and Y (t) as defined in Eq. (4.1). Quantum mechanically these are conjugate, non-
commuting observables; as a result, one cannot measure both quadratures perfectly,
as the measurement of X perturbs Y (and vice-versa). In this chapter, we will give up
trying to have full knowledge of x(t), and will instead attempt to monitor only one of
the two quadrature components. As we will show, this is something that can be done
with no fundamental limit coming from quantum mechanics. This opens the door to
force sensing with no fundamental quantum limit, as well as the possibility of using the
measurement to generate quantum squeezed states of the mechanical resonator. The
classic reference discussing such back-action evading single quadrature measurements
are (Braginsky et al., 1980), (Caves et al., 1980) and (Bocko and Onofrio, 1996), while
the full quantum theory (including the production of conditional quantum squeezed
states) was treated in (Clerk, Marquardt and Jacobs, 2008). Note that several recent
experiments have implemented this scheme using microwave circuit realizations of
optomechanics: (Hertzberg et al., 2010; Suh et al., 2014; Lecocq et al., 2015).

4.1 Single quadrature measurements

Our goal is measure a single mechanical quadrature. The canonically-conjugate quadra-
ture operators are defined in the Heisenberg picture (with respect to the mechanical
Hamiltonian) as:

x̂(t) =
(√

2xZPF

)
X̂(t) cos(ωMt) + Ŷ (t) sin(ωMt). (4.1)

with

X̂ =
1√
2

(
b̂+ b̂†

)
, Ŷ =

−i√
2

(
b̂− b̂†

)
(4.2)

We stress that in the Schrödinger picture, X̂(t) and Ŷ (t) are explicitly time-dependent
observables, and do not simply correspond to the position and momentum operators
of the mechanical resonator. For example, in the Schrödinger picture, we have:
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X̂(t) =
1√
2

(
b̂eiωMt + b̂†e−iωMt

)
=

1

xZPF

(
cos (ωMt) x̂−

sin (ωMt)

mωM
p̂

)
(4.3)

In the second equality, x̂ (p̂) is the standard Schrödinger-picture position (momentum)
operator of the oscillator. For an undamped oscillator, both quadrature operators are
constants of the motion. Note that the definition of the quadrature operator necessarily
requires some external phase reference, or equivalently, some choice defining the zero of
time. With the above definition, X̂(t = 0) is proportional to the mechanical position,
while Ŷ (t = 0) is proportional to the mechanical momentum.

The goal is to measure say X̂, and have all the corresponding back-action of the
measurement drive the unmeasured quantity Ŷ . As X̂ is dynamically independent
of Ŷ , the back-action will never come back to corrupt subsequent measurements of
X̂ at later times, and we can in principle make the measurement better and better
by increasing the measurement strength. Such a measurement is known as a back-
action evading (BAE) measurement. It is also an example of a quantum non-demolition
measurement, as one is measuring an observable (i.e. X̂(t)) that is a constant of the
motion.

While the basic idea is clear, upon first glance implementation would seem to be a
challenge. To measure X̂, we just need to couple this operator to some input operator
F̂ of our detector. From Eq. (4.3), we see that this would require time-dependent
couplings between the detector and both the mechanical position x̂ and mechanical
momentum p̂. This would be extremely difficult to achieve (see, e.g., Y. Chen’s lectures
discussing the difficulties of coupling a detector to mechanical momentum).

Luckily, there is a simple trick to let us turn a standard coupling between detec-
tor and mechanical position (like we have in optomechanics) into the kind of single-
quadrature coupling we need. The trick has two parts:

• Start with a detector which couples to mechanical position, but modulate the cou-
pling strength in time at the mechanical frequency ωM. Working in the Schrodinger
picture, we want to modify the basic system-detector interaction in Eq. (3.41) to
now have the form:

Ĥint =
(
Ā cosωMt

)
x̂ · F̂ = X̂(t) (1 + cos 2ωMt) + Ŷ (t) sin 2ωMt (4.4)

In the last line, we have re-expressed things in terms of the quadrature operators.
Note that the coupling to X̂ has a time-independent part, where the coupling to
Ŷ is strictly oscillating.

• Next, imagine we work with a “slow” detector, one that cannot respond to per-
turbations occurring at frequencies ∼ 2ωM. In that case, the time-dependent os-
cillating terms in the above equation will average away, and we will be left with
a time-independent coupling between the detector force operator F̂ and the X̂
quadrature only.

4.2 Two-tone QND scheme

As first discussed in (Braginsky et al., 1980), the above “modulated” coupling scheme
for measuring a single mechanical quadrature can be achieved using a standard op-
tomechanical setup if one works in the resolved sideband regime ωM � κ and drives



Two-tone QND scheme 35

!cav + !M!cav � !M



!cav + !M!cav � !M



a) b)

Fig. 4.1 (a) Cavity density of states and drive frequencies for the two-tone BAE mea-

surement scheme; the frequencies of the classical drives are marked with large solid arrows.

Photons arriving at the cavity resonance could have been generated either by anti-Stokes

scattering from the red-detuned drive tone, or Stokes scattering from the blue-detuned drive

tone. As the amplitudes of these drives are equal, the cavity amplitude at resonance effects

a measurement of the mechanical X quadrature. One needs to be in the good cavity limit,

where the mechanical frequency ωM is much larger than the cavity linewidth κ. (b) The

mechanical motion can also generate weak amplitudes at frequencies ωcav ± 2ωM via non-res-

onant Raman processes. As the density of states for such processes is small, their amplitude

is weak. These processes effectively measure the mechanical Y quadrature, and thus causing

a small back-action heating of X.

the cavity equally with coherent tones at both the red and blue mechanical sidebands,
i.e. at ωcav ± ωM. This is equivalent to amplitude modulating the laser drive on the
cavity. We thus consider a cavity input field (i.e. laser drive) of the form:

āin(t) ∼ e−iωcavt sin (ωMt+ φ) (4.5)

The phase φ of the amplitude modulation will directly determine the definition of the
mechanical quadrature which couples to the cavity field; we take φ = 0 for simplic-
ity in what follows. As usual, this coherent-state drive will induce an average (time-
dependent) amplitude in the cavity α(t) that can be found by solving the classical
equations of motion. We will again work in a displaced frame, and thus write the cav-
ity lowering operator as this classical amplitude plus a correction d̂ which describes
noise effects and the effects of the optomechanical coupling:

â = ācl(t) + d̂, ācl(t) = α0e
−iωcavt cosωMt (4.6)

We can take α0 to be real without loss of generality.
Linearizing the optomechanical interaction in the usual way yields:

Ĥint = gâ†â
x̂

xZPF
'
[

g

xZPF
α0 cos(ωMt)

]
x̂
(
d̂eiωcavt + h.c.

)
(4.7)

≡ A(t)x̂ · F̂ (t) (4.8)



36 Backaction evasion and conditional squeezing

We see that modulating the average cavity intensity naturally provides the modu-
lated coupling we are after. Working in an interaction picture with respect to the free
mechanical and cavity Hamiltonians Ĥ0 = ωMb̂

†b̂+ ωcavd̂
†d̂ yields

Ĥint =
G√

2

[
X̂ (1 + cos 2ωMt) + Ŷ sin 2ωMt

] (
d̂+ d̂†

)
(4.9)

where we have defined the many-photon couplingG = gα0. Note that in our interaction
picture, the mechanical quadrature operators have no explicit time-dependence, and
are given by Eqs. (4.1).

We now make use of the resolved sideband, good-cavity condition ωM � κ, and the
fact that we will be interested in coupling G � κ. In this limit the terms oscillating
at frequency 2ωM will average to zero on the timescales relevant to the dynamics
(which will all be much longer than 1/κ). We can thus safely make the rotating-wave
approximation (RWA), and drop the oscillating terms, resulting in a time-independent
interaction Hamiltonian:

Ĥint = GX̂ ·
(
d̂+ d̂†√

2

)
≡ GX̂ · X̂cav (4.10)

We see that the mechanical X̂ quadrature is coupled only to the corresponding X
quadrature of the cavity. Without dissipation, both X̂ and X̂cav are constants of the
motion. Similar to the case of standard position detection, as the mechanics only
couples to the X cavity quadrature, information on its motion will only drive the

conjugate cavity quadrature Ŷ ∼ −i
(
d̂− d̂†

)
(i.e. the optical phase quadrature). By

measuring the output Y quadrature, we thus obtain a measurement of the mechanical
X̂ quadrature.

To see this explicitly, we first solve the Heisenberg Langevin equation for d̂:

d

dt
d̂(t) = −κ

2
d̂(t)− iG√

2
X̂(t)−√κd̂in(t) (4.11)

Information on the mechanics will be at the cavity field near resonance, in a bandwidth
∼ γ � κ. We thus only need to describe d̂ at frequencies � κ, and solve this equation
adiabatically, i.e. ignoring the d/dt term. This yields:

d̂(t) =
−2iG√

2κ
X̂(t)− 2√

κ
d̂in(t) (4.12)

Information on the mechanical X quadrature is, as expected, encoded solely in the
imaginary part of d̂, and hence in the cavity Y quadrature. One thus measures the
Y quadrature of the output field. The measurement output (i.e. output homodyne
current) is then:

Î(t) =
√

2Ŷcav,out ∼
√

2κŶcav ∼
2
√

2G√
κ
X̂(t) + ξ̂(t) (4.13)

≡ 2
√

2G√
κ

(
X̂(t) + δX̂imp(t)

)
(4.14)
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where ξ̂ = −i(d̂in − d̂†in) is the Y quadrature of the input noise driving the cavity, and
is delta-correlated. In the last line, we have introduced the imprecision noise operator
δX̂imp(t) in the usual way, by referring the intrinsic noise in Î(t) back to the measured
mechanical quadrature. Note the

√
2 factor in the definition of the homodyne current

has just been included for convenience (the overall prefactor plays no role in our
analysis).

Using this form, one easily finds that symmetrized spectral density of the impreci-
sion noise is given by:

S̄XX,imp[ω] =
κ

8G2
≡ 1

k̃
(4.15)

The imprecision noise spectral density has the units of an inverse rate, and we have
thus used it to define an effective measurement rate k̃.

The rate k̃ has a simple interpretation: it tells us how quickly the power signal-
to-noise (SNR) ratio grows for a measurement where we try to resolve whether the
measured mechanical quadrature has been displaced an amount ∼ xZPF, i.e. is X = 1
or 0? A simple estimator would be to simply integrate the output current I(t), i.e.

m̂(t) ≡
∫ t

0

dt′Î(t′) (4.16)

It is easy to then check that in the absence of mechanical dissipation (and to lowest
order in the coupling to the detector)

SNR ≡ signal power

noise power
=

[〈m̂(t)〉X=1 − 〈m̂(t)〉X=0]
2

〈〈m̂2(t)〉〉 =

(√
k̃t− 0

)2

t
= k̃t (4.17)

where the variance 〈〈m̂2(t)〉〉 = 〈m̂2(t)〉 − 〈m̂(t)〉2.
Having understood the basics of the measurement, we can now ask about the effects

of back-action. Consider first the ideal limit where κ/ωM → 0, and hence the cavity
has strictly no coupling to the mechanical Ŷ quadrature. In this case X̂ commutes
with the interaction Hamiltonian, implying that it is completely unaffected by the
coupling. By solving the mechanical Heisenberg-Langein equation, one finds that the
fluctuations are the same as when G = 0, i.e.

S̄XX [ω] ≡ 1

2

∫ ∞
−∞

dteiωt
〈
{X̂(t), X̂(0)}

〉
=

γ/2

ω2 + (γ/2)2

(
1 + 2n̄Mth

)
(4.18)

Again, this is exactly what we would have without any coupling to the cavity.
In contrast, the mechanical Y quadrature is driven by the fluctuations in the cavity

X̂cav operator. This back-action does not change the damping rate of the quadrature,
but does heat it an amount corresponding to n̄BA quanta. One finds:

S̄Y Y [ω] =
γ/2

ω2 + (γ/2)2

(
1 + 2n̄Mth + 2n̄BA

)
, n̄BA =

2G2

κγ
≡ C (4.19)

We have introduced here again the optomechanical cooperativity C, which in this
context, can be viewed as the ratio of the measurement rate to the intrinsic mechanical
damping rate.
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Fig. 4.2 Mechanical state associated with various aspects of the BAE measurement, de-

picted as probability density in the phase space associated with the mechanical quadrature

amplitudes X and Y . (a) Mechanical state without the measurement: a thermal state with

equal uncertainty in the X and Y quadratures. (b) Unconditional mechanical state when the

measurement is on. The measured X quadrature is unaffected by the measurement, whereas

the back-action of the of the measurement heats the Y quadrature and thus increases its

uncertainty. (c) Conditional mechanical state. If we use the information in the measurement

record I(t) associated with a particular run of the experiment, we see that the mechanical

resonator is in a squeezed state, where the X quadrature uncertainty has been greatly re-

duced compared to its original value. However, the mean values of X and Y (i.e. centre of

the ellipse) undergoes a random walk which is completely correlated with the measurement

record. If we average over these fluctuations (e.g. discard the measurement record), we recover

the picture in panel (b).

What if we include the effects of κ/ωM? The oscillating terms in Eq. (4.9) are now
not completely negligible. Heuristically, they give rise to scattering processes where
incident drive photons are scattered to frequencies ωcav± 2ωM (see Fig. 4.1 (b)). Such
processes have a very small amplitude due to the very small cavity density of states at
these frequencies. They do however contain information on the mechanical Y quadra-
ture, thus result in heating of the mechanical X quadrature. A careful calculation
(see (Clerk et al., 2008)) finds that this additional heating results can be captured by
making the replacement:

n̄Mth → n̄Mth +
1

32

(
κ

ωM

)2

(4.20)

in Eqs. (4.18),(4.19) for the quadrature noise spectral densities

4.3 Conditional squeezing: heuristic description

We have seen that a perfect back-action evading measurement results in a heating of
the unmeasured, conjugate mechanical quadrature Y , while the measured mechanical
quadrature X is completely unaffected by the measurement, c.f. Eq. (4.18). This is in
keeping with the fact that X̂ commutes with the optomechanical coupling Hamiltonian,
and is thus completely unaffected by the light field used for the measurement. We thus
expect the mechanical state (pictured as a phase space distribution) to be modified
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as shown in Fig. 4.2(b). Note that the total entropy of the state appears to have been
increased by the measurement.

While this seems simple enough, it would seem to contradict another aspect of our
treatment. Namely, we showed that the added noise of the measurement (which has
no back-action contribution) could be made arbitrarily small by increasing the the
measurement strength (i.e. G), meaning that one could make an essentially perfect
measurement of X. This seems to imply that the measurement will greatly reduce the
uncertainty in the X quadrature, in stark contrast to what is depicted in Fig. 4.2(b).

There is of course no contradiction here. To fully describe the reduction in X uncer-
tainty occurring during a measurement, we need to understand what happens during a
particular run of the experiment: given a particular history of the measurement output
I(t), what is the state of the mechanical resonator? We will show that there is a partic-
ularly simple picture for this “conditional” mechanical state, as is shown schematically
in Fig. 4.2(c). Once transients have died away, the conditional mechanical state will
have greatly reduced X quadrature uncertainty– it will be a squeezed state. However,
the mean position of this state in phase space will undergo a random walk, a random
walk which is completely correlated with the seemingly random fluctuations of the
measurement record I(t). If we have access to the measurement record, we can fol-
low these fluctuations, and thus to us, this random motion does not represent a true
uncertainty.

In contrast, for an observer who does not have access to I(t), the fluctuations in
the mean position of the mechanical squeezed state are just another uncertainty in
the mechanical state. For such an observer, the mechanical resonator is best described
by the unconditional state, where we average over all possible measurement outcomes,
and thus include the random walk done by the conditional squeezed state means in the
state uncertainty. Doing so, we return to the picture in Fig. 4.2(b): the fluctuations in
the mechanical resonator X quadrature to an observer who does not have access to
the measurement record are the same as they were without the measurement.

In what follows, we will develop in more detail the theoretical tools required to
describe such a conditional evolution and the conditional mechanical state. We will
then apply this formalism to our optomechanical back-action evading measurement to
understand how one can generate squeezed mechanical states from the measurement.

4.4 Stochastic master equation description of a conditional
measurement

In this section, we will give a quick and dirty “derivation” of the stochastic master
equation approach that describes the conditional evolution of the mechanical state
during an ideal version of our back-action evading measurement. Our approach follows
closely the extremely pedagogical treatment in (Jacobs and Steck, 2006), which itself is
related to the derivation in (Caves and Milburn, 1987). The derivation, interpretation
and use of such stochastic master equations are treated extensively in recent textbooks
(Wiseman and Milburn, 2014; Jacobs, 2014).

4.4.1 Discretized measurement record

We start by writing the measurement output (Eq. (4.14)) as
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Î(t) =
√
k̃X̂(t) + ξ̂(t) (4.21)

As we already saw in the discussion surrounding Eq. (4.17), if we only look at I(t)
over a very short time interval, we get almost no information on the state of the me-
chanical resonator: the noise ξ(t) in the measurement record completely dominates the
contribution from the signal X(t). Useful information is thus only acquired gradually
over time. To describe our measurement, we want to quantiatively describe the small
information gain that occurs over a given short time interval, and importantly, also
describe the corresponding change in the mechanical state.

We start by discretizing time into finite intervals of width ∆t and define tj ≡ j∆t;
we will eventually take the ∆t→ 0 limit. During each of these finite intervals, we use
the information in I(t) to estimate the state of the mechanics. This is done analogously
to Eq. (4.17). The estimate of X derived from I(t) in the interval (tj−1, tj) is described

by the operator X̂tj , defined as

X̂tj ≡
1√
k̃∆t

∫ tj

tj−1

dt′Î(t′). (4.22)

For simplicity, we start by assuming that the instantaneous mechanical resonator
state is pure and described by the wavefunction |ψ(t)〉, and assume that it has no
intrinsic dynamics– we ignore its intrinsic dissipation and any external forces. We will
also assume that any back-action disturbance occurs instantaneously at the end of each
interval (tj−1, tj), and hence |ψ(t)〉 is constant over the interval. As we are interested
in the ∆t → 0 limit, this approximation is not unreasonable. Using this fact and the
fact that 〈ξ̂(t)〉 = 0, we have

〈X̂tj 〉 ' 〈X̂(t)〉 ≡ 〈ψ(t)|X̂|ψ(t)〉 (4.23)

We can also calculate the variance of X̂tj :〈〈(
X̂tj

)2
〉〉
≡
〈(

X̂tj −
〈
X̂tj

〉)2
〉

' 1(√
k̃∆t

)2

∫ tj

tj−1

dt′
∫ tj

tj−1

dt′′〈ξ̂(t′)ξ̂(t′′)〉 (4.24)

=
1

k̃∆t
≡ σ (4.25)

Note that we have ignored the contribution to the variance from the intrinsic uncer-
tainty of X̂ in the mechanical resonator state |ψ(t)〉. This is because the contribution
we keep (which is solely from the imprecision noise of the measurement, ξ(t)) com-
pletely dominates the intrinsic noise in the limit of small ∆t. This imprecision-noise
contribution scales like 1/∆t, while the intrinsic noise would tend to a constant.

We have thus discretized the measurement record I(t) that would be obtained in
a given experimental run into a set of discrete X-quadrature estimates Xtj . These
estimates can be viewed as an effective classical stochastic process, i.e.
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Xtj = 〈X̂(tj)〉+
∆Wj√
k̃∆t

(4.26)

Here, the ∆Wj are random variables describing the fluctuations of each estimate due
to the imprecision noise ξ(t) in the measurement record. Equivalently, they represent
the difference in the outcome of the measurement during the given time interval from
the mean of X̂ in the state |ψ(t)〉. As ξ(t) is Gaussian white noise, it follows that
the ∆Wj are each Gaussian random variables with zero mean, and further, are not
correlated with one another. From Eq. (4.25), we have simply:

∆Wj = 0 ∆Wj∆Wj′ = δj,j′∆t (4.27)

The bar here represents an average over the classical stochastic process. We stress
that the classical stochastic process defined by Eq. (4.26) has been constructed so
that it yields the same statistics as the microscopic (quantum) theory describing our
measurement.

4.4.2 State evolution

Having come up with a simple way to think about the measurement record produced
in a single run of the experiment, we now return to the question of back-action: in
a particular run of the experiment (described by a particular set of Xtj ), how will
the state |ψ(t)〉 of the mechanical resonator change over time? Again, we are only
considering here mechanical dynamics caused by the measurement, and are assuming
that these disturbances happen instantaneously between each measurement interval
(tj−1, tj). At the end of a given measurement interval, the experimentalist will have
obtained a particular measurement result Xtj . If the measurement was a simple, strong
projective measurement, the mechanical state after the measurement would be com-
pletely determined by the outcome Xtj– the mechanics would just be projected into

the eigenstate of X̂ corresponding to this outcome.
In our system, we are however very far from the strong measurement limit, as

we only obtain a tiny bit of information on X during the given time interval. The
final mechanical state will thus depend both on the initial mechanical state and the
measurement outcome, and we can write:

|ψ(tj + ∆t)〉 = M̂
(
Xtj

)
|ψ(tj)〉 (4.28)

The operator M̂
(
Xtj

)
describes the outcome-dependent disturbance of the mechanical

state by the measurement in a given time interval. It is a so-called Krauss operator,
used in the POVM description of the kind of incomplete, weak measurements relevant
here (see, e.g., (Jacobs and Steck, 2006) for a more complete discussion). We assume
the ideal case where this state disturbance is as small as possible given the information
gain of the measurement. As the statistics of our measurement outcomes are Gaussian
distributed and dominated by imprecision noise, the corresponding Krauss operators
also have a Gaussian form:

M̂(x) ∝ exp

[
− 1

4σ2

(
x− X̂

)2
]
, (4.29)
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where σ = 1/(k̃∆t) is variance of each discrete measurement (c.f. Eq. (4.25)), and
we have dropped a normalization constant. Note that in extreme limit where σ →
∞, M̂(x) → 1: there is no information obtained in the measurement, and hence no
measurement-induced change in the mechanical state. In the opposite case σ → 0, the
M̂(x) → |x〉〈x|, i.e. the Krauss operators become projectors onto eigenstates of X̂,
and we recover the standard description of a strong measurement.

Using Eq. (4.26), we can re-express the post-measurement mechanical state in
terms of the random variables ∆Wj as:

|ψ(tj + ∆t)〉 ∝ exp

− k̃∆t

4
X̂2 +

 k̃∆t

2
〈X̂(tj)〉+

√
k̃

4
∆Wj

 X̂

 |ψ(tj)〉, (4.30)

where again we have dropped purely constant prefactors affecting the normalization
of the state.

Next, as we are interested in the ∆t→ 0 limit, all the terms in the argument of the
above exponential will become small, and we can thus Taylor expand keeping terms to
order ∆t only. This implies that we need terms that are up to second order in ∆Wj , as

this random variable has a variance ∆t, and hence a typical size
√

∆t. We thus find:

|ψ(tj + ∆t)〉 ∝

1− k̃∆t

4
X̂2 +

 k̃∆t

2
〈X̂(tj)〉+

√
k̃

4
∆Wj

 X̂ +
k̃

8
(∆Wj)

2
X̂2

 |ψ(tj)〉

(4.31)

Finally, we want to take the limit where the duration of our small time intervals
tends to an infinitesimal, ∆t→ dt, which will give us a stochastic differential equation
for the evolution of the mechanical state. In this limit, we will follow standard con-
vention, and label ∆W as dW , the so-called Wiener increment. In general, one would
think that dW 2 is itself a random variable which fluctuates. In the ∆t→ 0 limit, these
fluctuations play no role, and we can rigorously replace dW 2 by its average value, dt
(see, e.g., Ch. 3 of (Jacobs, 2010) for a detailed discussion). Using this, and also adding
terms to ensure that our state remains normalized, we find:

d|ψ〉 ≡ |ψ(t+ dt)〉 − |ψ(t)〉

=

− k̃
8

(
X̂ − 〈X̂〉

)2

dt+

√
k̃

4

(
X̂ − 〈X̂〉

)
dW

 |ψ(t)〉 (4.32)

In the same limit, the measurement record can be represented as:

dI ≡
∫ t

t−∆t

I(t′)→
√
k̃〈X̂(t)〉dt+ dW (4.33)

Several comments are now in order:

• Eq. (4.32) and Eq. (4.33) are coupled stochastic differential equations. The random
Wiener increment dW both dictates the evolution of the measurement record and
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the evolution of the state of the mechanical resonator. Formally, it tells us that
the noise in the measurement record directly reflects changes in the mechanical
state.

• Eq. (4.32) is a nonlinear, as the expectation value 〈X̂〉 on the RHS is of course itself
a function of the mechanical state. It should be evaluated using the mechanical
state at time t.

• It is useful to interpret the two terms Eq. (4.33) in a manner that connects to
Baysian probabilities. The first term is what we “expect” from our measurement,
given our current knowledge of the mechanical state (as represented by |ψ(t)〉).
The second term (dW ) represents the “surprise” of our measurement. Just as in
Baysian probabilities, we should update our knowledge of the mechanical state
based on this new information. This is exactly the role of the dW term on the
RHS of Eq (4.32).

Finally, it is straightforward to calculate the corresponding equation of motion for
the density matrix describing the mechanical state, using ρ̂ = |ψ〉〈ψ| and Eq. (4.32).
As usual, one needs to retain terms to order ∆W 2, as in the ∆t → 0 limit, ∆W 2 →
dW 2 = dt. One finds:

dρ̂
∣∣∣
meas

= − k̃
8

[
X̂,
[
X̂, ρ̂

]]
dt+

√
k̃

4

(
X̂ρ̂+ ρ̂X̂ − 2〈X̂〉ρ̂

)
dW (4.34)

Again, the last term on the RHS ∝ dW describes how the evolution of mechanical
state is correlated with the noise in the measurement record; equivalently, it tells us
how our knowledge of the mechanical state (as encoded in ρ̂) is updated by the surprise
dW of the measurement. Note that if ρ̂ is initially in a pure state, then Eq. (4.34) keeps
it in a pure state at all times (for the simple reason that the evolution described by
Eq. (4.32) also keeps the mechanical state pure). The evolution of the density matrix
clearly depends on the particular history and form of the measurement record (through
the dW ) terms, and we call this the conditional density matrix. One could also ask
what the state of the mechanical resonator is averaged over all possible measurement
outcomes. Equivalently, if we don’t have access to I(t), how would we describe the me-
chanical state? Averaging over possible measurement records is equivalent to averaging
over the dW , which is simple, as dW = 0. Hence, the unconditional density matrix
evolves only under the first term on the RHS of Eq. (4.34). As can easily be checked,
this term causes off-diagonal elements of the the density matrix in the X̂-eigenstate
basis to decay exponentially. This is just the expected unconditional back-action of
the measurement, which is a heating of the unmeasured Y quadrature.

Note that while we have given a rather heuristic derivation of the conditional
master equation for our system, it is possible to give a more microscopic description,
one that starts with the photodetection involved in the homodyne measurement of the
cavity output field, see (Clerk et al., 2008) for details.

Finally, we also need to include terms which correspond to the measurement-
independent evolution of the mechanical resonator. In our case, the mechanical quadra-
tures have no free Hamiltonian evolution, but will be subject to the heating and damp-
ing by the intrinsic sources of mechanical dissipation. We have discussed how these
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can be described using the Heisenberg-Langevin formalism. In the Markovian limit of
interest, they can equivalently be described by Linblad terms in a quantum master
equation:

dρ̂
∣∣∣
diss

= γ
(
1 + n̄Mth

) [
b̂ρ̂b̂† − 1

2

{
b̂†b̂, ρ̂

}]
dt+ γ

(
n̄Mth
) [
b̂†ρ̂b̂− 1

2

{
b̂b̂†, ρ̂

}]
dt (4.35)

These describe the additional and removal of quanta from the mechanical resonator
by a thermal reservoir. The total evolution of the system in the presence of the mea-
surement is then:

dρ̂ = dρ̂
∣∣∣
diss

+ dρ̂
∣∣∣
meas

(4.36)

4.5 Conditional back-action evading measurement

We can now apply the general theory of the previous section to our ideal cavity op-
tomechanical single quadrature measurement. We want to describe the conditional
state of the mechanical resonator, i.e. its state during a particular run of the mea-
surement, with a particular measurement record I(t). As the RHS of the conditional
master equation has no terms that are involve more than two mechanical raising or
lowering operators, it has the property that Gaussian states (e.g. a thermal state, the
ground state) remain Gaussian under the evolution. We can thus reduce our condi-
tional master equation to a set of ODE’s for the means and variances of the Gaussian
state. For the X̂ quadrature, we thus need to know:

X̄(t) ≡ 〈X̂(t)〉cond VX(t) ≡ 〈X̂2(t)〉cond −
(
〈X̂(t)〉cond

)2

(4.37)

where all averages are with respect to the conditional density matrix of the mechanical
resonator.

One finds straightforwardly that the evolution of the variances and covariances are
completely deterministic, i.e. they do not involve dW . For the X quadrature, one finds:

dVX
dt

= −k̃VX2 − γ
(
VX − n̄Mth −

1

2

)
(4.38)

This has an extremely simple interpretation. Without the measurement k̃ = 0, the
intrinsic mechanical dissipation causes VX to relax exponentially (rate γ) to its thermal
equilibrium value. In contrast, with the measurement, the first term tries to relax VX
towards zero, i.e. prepare a squeezed state where the X quadrature variance is minimal.

Note that for our system, the measurement strength k̃ = 4Cγ, where the coopera-
tivity is defined in Eq. (4.19). For the large cooperativity limit, the stationary value
of the variance is given by:

VX
VX,zpt

→
√

1 + 2n̄Mth
2C ≡

√
1

2Cth
(4.39)

where in the last line, we have introduced the so-called thermal cooperativity. We thus
see that achieving strong quantum squeezing requires Cth > 1/2; this is similar to the
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condition required for ground state cavity cooling with a system in the good cavity
limit.

We can also ask about how we recover the unconditional picture of the measure-
ment, where the X quadrature is unaffected. Recall the picture in Fig. 4.2(c): the X
quadrature is in a squeezed state whose mean fluctuates in a way that is correlated
with the measurement record. If we don’t have access to the measurement record, we
should include these fluctuations of the mean in the uncertainty of X, and expect that
this will offset the squeezing found before. To make this quantitative, we can calculate
the equation of motion for the average of X in the conditional mechanical state from
the conditional master equation. One finds:

dX̄(t) = −γ
2
X̄dt+

√
k̃VX(t)dW (4.40)

The evolution of the mean of X is indeed fluctuating, in a way that is completely
correlated with the measurement record (i.e. dW both determines X̄ and the mea-
surement record I(t)). If one averages over these fluctuations, one can explicitly check
that:

VX + 〈X̄(t)2〉 =
1

2
+ n̄Mth (4.41)

i.e. one recovers the results of the unconditional theory, where the X quadrature vari-
ance is the thermal equilibrium value, the same as though there were no measurement.

What about the unmeasured Y quadrature, how does it evolve? Letting C(t) de-
note the covariance 1

2 〈{X̂(t), Ŷ (t)}〉, we have again that the remaining variances and
covariances also evolve deterministically:

dVY
dt

= −k̃C2 − γ
(
VY − n̄Mth −

1

2

)
+
k̃

4
(4.42)

dC

dt
= −k̃VXC − γC (4.43)

The last term on the RHS of Eq. (4.42) describes the expected heating of the measure-
ment. The first term tells us that if there are correlations between the quadratures,
then our measurement of X also has the effect of reducing the uncertainty in Y . Fi-
nally, the last equation tells us that under the measurement, any initial correlations
between the quadratures will decay away.

Finally, we have considered so far the case of a perfect measurement. It is of course
also important to understand what happens to the conditional squeezing generated
by the measurement when things are not so perfect. One key imperfection is that the
final measurement of the cavity output quadrature is not perfect. This could be due to
losses (which replace signal by vacuum noise), or due to unwanted added noise in the
final homodyne measurement (e.g. due to a following non-quantum-limited amplifier
in a microwave frequency optomechanics experiment). In either case, the next effect
is to reduce the size of the signal term in Eq. (4.14) while keeping the noise term
the same, i.e. k̃ → k̃

√
η, where the efficiency η ≤ 1. Including this imperfection, one

finds that the conditioning of the X quadrature (first term in Eq. (4.41) is reduced
by a factor of η, whereas the back-action heating of the Y quadrature is unchanged
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(last term in Eq. (4.42)). As a result, in the large cooperativity limit,the condition for
quantum squeezing becomes more stringent:(

Cth ≡
2G2

κγ
(
1 + 2n̄Mth

)) ≥ 1

2η
(4.44)

4.6 Feedback to create unconditional squeezing

As discussed in (Clerk et al., 2008), one can convert the conditional squeezing de-
scribed above into true squeezing: one needs to use information in the measurement
record to apply an appropriate feedback force which suppresses the fluctuations in the
conditional mean X̄(t). The feedback force should create an extra damping of the X̄(t);
we thus need to apply a linear force which couples to the mechanical Ŷ quadrature:

Ĥfb = −αγ
2
X̄(t) · Ŷ (4.45)

Here, α(γ/2) is the strength of the applied feedback. It is easy to check that this feed-
back force increases the damping of X̄ in Eq. (4.40) by an amount αγ/2. For large α,
this feedback-induced damping will suppress the X̄ fluctuations, and the unconditional
state variance of X will be the same as the conditional (squeezed) variance.

This might still seem mysterious: how does the experimentalist know what X̄(t)
is? To answer this, we re-write Eq. (4.40) (including the feedback force) in terms of
the measurement record dI(t) defined in Eq. (4.33). We find:

d

dt
X̄ = −γ

2
(1 + α) X̄ +

√
k̃VX

(
dI(t)−

√
k̃X̄
)

(4.46)

We can now solve this equation, expressing X̄(t) in terms of the measurement record
at earlier times. Assuming VX has achieved its stationary value, we have

X̄(t) =
√
k̃VX

∫ t

−∞
dt′e−Γ(t−t′)dI(t′) (4.47)

Γ =
γ

2
(1 + α) + k̃VX (4.48)

Thus, the conditional mean X̄(t) (i.e. our best estimate for the value of the mechanical
X quadrature) is determined by filtering the measurement record obtained at earlier
times. The optimal filter is just exponentially decaying (i.e. the measurement record
at recent times influence our estimate more than the record at earlier times), with a
time constant 1/Γ that depends on both the measurement strength (through k̃) and
on the feedback strength (through α). As has been discussed extensively, the optimal
filter here coincides with the classical Kalman filter (see, e.g. (Jacobs, 2014)).

We now have a concrete prescription for how to get unconditional squeezing via
measurement plus feedback. At each instant in time, one first constructs the optimal
estimate of X̄(t) from the measurement record as per the above equation. Next, one
uses this estimate to apply the appropriate linear feedback force which damps X̄.
More details on feedback-induced squeezing in this system are provided in (Clerk
et al., 2008).
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4.7 Extensions of back-action evasion techniques

More elaborate versions of back-action evasion measurements in quantum optome-
chanics are possible. In a system where two mechanical resonators are coupled to a
single cavity, one can extend the two-tone driving approach to make a back-action
free measurement of two commuting collective mechanical quadratures (Woolley and
Clerk, 2013) (e.g. the sum of the X quadratures of mechanical resonator 1 and 2,
and the difference of their Y quadratures). This is allows the possibility to measure
both quadratures of an applied force with absolutely no quantum limit; it is intimately
connected to ideas developed in (Tsang and Caves, 2010) and (Wasilewski et al., 2010).

Another interesting possibility is to “break” the QND measurement described in
the previous sections by slightly imbalancing the amplitudes of the two cavity drive
tones. This imbalance ruins the back-action evasion nature of the measurement, as
the mechanical X quadrature no longer commutes with the Hamiltonian. However,
the resulting measurement backaction on X can be harnessed to directly squeeze the
mechanical resonator. As discussed extensively in (Kronwald et al., 2013), this is an
example of coherent feedback, where the driven cavity both “measures” the mechanical
X quadrature, and also applied exactly the correct feedback force needed to squeeze
the mechanical resonator. This coherent feedback approach has the strong advantage
of not requiring the experimentalist both to make a shot-noise limited measurement of
the cavity output, nor to process a classical measurement record and generate an ideal
feedback force. In a sense, the driven cavity does all the work. This scheme has been
implemented in three recent experiments to achieve true quantum squeezing, where the
X-quadrature mechanical uncertainty drops below the zero-point value (even though
one starts from a thermal state) (Wollman et al., 2015; Pirkkalainen et al., 2015;
Lecocq et al., 2015). This general idea of coherent feedback can also be extended to
the “two-mode” backaction-evasion scheme described above, thus providing a means
for generating mechanical entanglement (Woolley and Clerk, 2014).



Appendix A

Derivation of power gain expression

To be able to say that our detector truly amplifies the motion of the oscillator, it is
not sufficient to simply say the response function χIF must be large (note that χIF
is not dimensionless!). Instead, true amplification requires that the power delivered
by the detector to a following amplifier be much larger than the power drawn by the
detector at its input– i.e., the detector must have a dimensionless power gain GP [ω]
much larger than one. If the power gain was not large, we would need to worry about
the next stage in the amplification of our signal, and how much noise is added in
that process. Having a large power gain means that by the time our signal reaches
the following amplifier, it is so large that the added noise of this following amplifier is
unimportant

To make the above more precise, we start with the ideal case of no reverse gain,
χFI = 0. We will define the power gain GP [ω] of our generic position detector in
a way that is analogous to the power gain of a voltage amplifier. Imagine we drive
the oscillator we are trying to measure (whose position is x) with a force 2FD cosωt;
this will cause the output of our detector 〈Î(t)〉 to also oscillate at frequency ω. To
optimally detect this signal in the detector output, we further couple the detector
output I to a second oscillator with natural frequency ω, mass M , and position y:
there is a new coupling term in our Hamiltonian, H ′int = BÎ · ŷ, where B is a coupling
strength. The oscillations in 〈I(t)〉 will now act as a driving force on the auxiliary
oscillator y (see Fig 3.1). We can consider the auxiliary oscillator y as a “load” we are
trying to drive with the output of our detector.

To find the power gain, we need to consider both Pout, the power supplied to the
output oscillator y from the detector, and Pin, the power fed into the input of the
amplifier. Consider first Pin. This is simply the time-averaged power dissipation of the
input oscillator x caused by the back-action damping γBA[ω]. Using a bar to denote a
time average, we have

Pin ≡ MγBA[ω] · ẋ2 = MγBA[ω]ω2|χxx[ω]|2F 2
D. (A.1)

Note that the oscillator susceptibility χxx[ω] includes the effects of γBA, c.f. Eq. (3.52).
Next, we need to consider the power supplied to the “load” oscillator y at the detec-

tor output. This oscillator will have some intrinsic, detector-independent damping γld,
as well as a back-action damping γout. In the same way that the back-action damping
γBA of the input oscillator x is determined by the quantum noise in F̂ (cf. Eq. (3.20)),
the back-action damping of the load oscillator y is determined by the quantum noise
in the output operator Î:
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γout[ω] =
B2

Mω
[−Im χII [ω]]

=
B2

M~ω

[
SII [ω]− SII [−ω]

2

]
, (A.2)

where χII is the linear-response susceptibility which determines how 〈Î〉 responds to
a perturbation coupling to Î:

χII [ω] = − i
~

∫ ∞
0

dt
〈[
Î(t), Î(0)

]〉
eiωt. (A.3)

As the oscillator y is being driven on resonance, the relation between y and I is given
by y[ω] = χyy[ω]I[ω] with χyy[ω] = −i[ωMγout[ω]]−1. From conservation of energy, we
have that the net power flow into the output oscillator from the detector is equal to
the power dissipated out of the oscillator through the intrinsic damping γld. We thus
have

Pout ≡ Mγld · ẏ2

= Mγldω
2|χyy[ω]|2 · |BAχIFχxx[ω]FD|2

=
1

M

γld

(γld + γout[ω])
2 · |BAχIFχxx[ω]FD|2. (A.4)

Using the above definitions, we find that the ratio between Pout and Pin is inde-
pendent of γ0, but depends on γld:

Pout

Pin
=

1

M2ω2

A2B2|χIF [ω]|2
γout[ω]γBA[ω]

γld/γout[ω]

(1 + γld/γout[ω])
2 . (A.5)

We now define the detector power gain GP [ω] as the value of this ratio maximized
over the choice of γld . The maximum occurs for γld = γout[ω] (i.e. the load oscillator
is “matched” to the output of the detector), resulting in:

GP [ω] ≡ max

[
Pout

Pin

]
=

1

4M2ω2

A2B2|χIF |2
γoutγBA

=
|χIF [ω]|2

4Im χFF [ω] · Im χII [ω]
(A.6)

In the last line, we have used the relation between the damping rates γBA[ω] and
γout[ω] and the linear-response susceptibilities χFF [ω] and χII [ω], c.f. Eq. (3.24). We
thus find that the power gain is a simple dimensionless ratio formed by the three
different response coefficients characterizing the detector, and is independent of the
coupling constants A and B. As we will see, it is completely analogous to the power
gain of a voltage amplifier, which is also determined by three parameters: the voltage
gain, the input impedance and the output impedance.
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Finally, we note that the above results can be generalized to include a non-zero
detector reverse gain, χFI , see (Clerk et al., 2010). In the case of a perfectly symmetric
detector (i.e. χFI = χ∗IF ), one can show that the power gain is at most equal to one:
true amplification is never possible in this case.
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